Le Thuc Duy, Zhang Junpeng, Liu Lin, Liu Huawen, Li Jiuyong
School of Information Technology and Mathematical Sciences, University of South Australia, Adelaide, South Australia, Australia.
Faculty of Engineering, Dali University, Dali, China.
PLoS One. 2015 Dec 30;10(12):e0145386. doi: 10.1371/journal.pone.0145386. eCollection 2015.
microRNAs (miRNAs) are important gene regulators at post-transcriptional level, and inferring miRNA-mRNA regulatory relationships is a crucial problem. Consequently, several computational methods of predicting miRNA targets have been proposed using expression data with or without sequence based miRNA target information. A typical procedure for applying and evaluating such a method is i) collecting matched miRNA and mRNA expression profiles in a specific condition, e.g. a cancer dataset from The Cancer Genome Atlas (TCGA), ii) applying the new computational method to the selected dataset, iii) validating the predictions against knowledge from literature and third-party databases, and comparing the performance of the method with some existing methods. This procedure is time consuming given the time elapsed when collecting and processing data, repeating the work from existing methods, searching for knowledge from literature and third-party databases to validate the results, and comparing the results from different methods. The time consuming procedure prevents researchers from quickly testing new computational models, analysing new datasets, and selecting suitable methods for assisting with the experiment design. Here, we present an R package, miRLAB, for automating the procedure of inferring and validating miRNA-mRNA regulatory relationships. The package provides a complete set of pipelines for testing new methods and analysing new datasets. miRLAB includes a pipeline to obtain matched miRNA and mRNA expression datasets directly from TCGA, 12 benchmark computational methods for inferring miRNA-mRNA regulatory relationships, the functions for validating the predictions using experimentally validated miRNA target data and miRNA perturbation data, and the tools for comparing the results from different computational methods.
微小RNA(miRNA)是转录后水平上重要的基因调控因子,推断miRNA与mRNA的调控关系是一个关键问题。因此,已经提出了几种利用表达数据预测miRNA靶标的计算方法,这些表达数据带有或不带有基于序列的miRNA靶标信息。应用和评估此类方法的典型步骤是:i)在特定条件下收集匹配的miRNA和mRNA表达谱,例如来自癌症基因组图谱(TCGA)的癌症数据集;ii)将新的计算方法应用于所选数据集;iii)根据文献和第三方数据库中的知识验证预测结果,并将该方法的性能与一些现有方法进行比较。鉴于在收集和处理数据、重复现有方法的工作、从文献和第三方数据库中搜索知识以验证结果以及比较不同方法的结果时所花费的时间,这个过程很耗时。耗时的过程阻碍了研究人员快速测试新的计算模型、分析新的数据集以及选择合适的方法来辅助实验设计。在这里,我们展示了一个R包miRLAB,用于自动推断和验证miRNA与mRNA的调控关系。该包提供了一整套用于测试新方法和分析新数据集的管道。miRLAB包括一个直接从TCGA获取匹配的miRNA和mRNA表达数据集的管道、12种推断miRNA与mRNA调控关系的基准计算方法、使用经过实验验证的miRNA靶标数据和miRNA干扰数据验证预测结果的功能,以及比较不同计算方法结果的工具。