Suppr超能文献

从批量和单细胞 RNA 测序数据中扫描样本特异性 miRNA 调控。

Scanning sample-specific miRNA regulation from bulk and single-cell RNA-sequencing data.

机构信息

School of Engineering, Dali University, Dali, 671003, Yunnan, China.

UniSA STEM, University of South Australia, Mawson Lakes, SA, 5095, Australia.

出版信息

BMC Biol. 2024 Sep 27;22(1):218. doi: 10.1186/s12915-024-02020-x.

Abstract

BACKGROUND

RNA-sequencing technology provides an effective tool for understanding miRNA regulation in complex human diseases, including cancers. A large number of computational methods have been developed to make use of bulk and single-cell RNA-sequencing data to identify miRNA regulations at the resolution of multiple samples (i.e. group of cells or tissues). However, due to the heterogeneity of individual samples, there is a strong need to infer miRNA regulation specific to individual samples to uncover miRNA regulation at the single-sample resolution level.

RESULTS

Here, we develop a framework, Scan, for scanning sample-specific miRNA regulation. Since a single network inference method or strategy cannot perform well for all types of new data, Scan incorporates 27 network inference methods and two strategies to infer tissue-specific or cell-specific miRNA regulation from bulk or single-cell RNA-sequencing data. Results on bulk and single-cell RNA-sequencing data demonstrate the effectiveness of Scan in inferring sample-specific miRNA regulation. Moreover, we have found that incorporating the prior information of miRNA targets can generally improve the accuracy of miRNA target prediction. In addition, Scan can contribute to construct cell/tissue correlation networks and recover aggregate miRNA regulatory networks. Finally, the comparison results have shown that the performance of network inference methods is likely to be data-specific, and selecting optimal network inference methods is required for more accurate prediction of miRNA targets.

CONCLUSIONS

Scan provides a useful method to help infer sample-specific miRNA regulation for new data, benchmark new network inference methods and deepen the understanding of miRNA regulation at the resolution of individual samples.

摘要

背景

RNA 测序技术为理解包括癌症在内的复杂人类疾病中的 miRNA 调控提供了有效的工具。已经开发了大量的计算方法来利用批量和单细胞 RNA 测序数据,以确定多个样本(即细胞或组织群)的 miRNA 调控。然而,由于个体样本的异质性,强烈需要推断个体样本特有的 miRNA 调控,以揭示单细胞水平的 miRNA 调控。

结果

在这里,我们开发了一个用于扫描样本特异性 miRNA 调控的框架 Scan。由于单个网络推断方法或策略不能很好地适用于所有类型的新数据,因此 Scan 结合了 27 种网络推断方法和两种策略,从批量或单细胞 RNA 测序数据中推断组织特异性或细胞特异性 miRNA 调控。批量和单细胞 RNA 测序数据的结果证明了 Scan 推断样本特异性 miRNA 调控的有效性。此外,我们发现整合 miRNA 靶标的先验信息通常可以提高 miRNA 靶标预测的准确性。此外,Scan 有助于构建细胞/组织相关网络并恢复聚合 miRNA 调控网络。最后,比较结果表明,网络推断方法的性能可能是特定于数据的,需要选择最佳的网络推断方法来更准确地预测 miRNA 靶标。

结论

Scan 为新数据提供了一种有用的方法来帮助推断样本特异性 miRNA 调控,为新的网络推断方法提供了基准,并加深了对个体样本水平 miRNA 调控的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93b7/11438147/6ec9c45fd791/12915_2024_2020_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验