Yu Ai-Qun, Pratomo Juwono Nina Kurniasih, Foo Jee Loon, Leong Susanna Su Jan, Chang Matthew Wook
Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, 117597 Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, 117456 Singapore.
Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, 117597 Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, 117456 Singapore; Singapore Institute of Technology, 10 Dover Drive, 138683 Singapore.
Metab Eng. 2016 Mar;34:36-43. doi: 10.1016/j.ymben.2015.12.005. Epub 2015 Dec 22.
Short branched-chain fatty acids (SBCFAs, C4-6) are versatile platform intermediates for the production of value-added products in the chemical industry. Currently, SBCFAs are mainly synthesized chemically, which can be costly and may cause environmental pollution. In order to develop an economical and environmentally friendly route for SBCFA production, we engineered Saccharomyces cerevisiae, a model eukaryotic microorganism of industrial significance, for the overproduction of SBCFAs. In particular, we employed a combinatorial metabolic engineering approach to optimize the native Ehrlich pathway in S. cerevisiae. First, chromosome-based combinatorial gene overexpression led to a 28.7-fold increase in the titer of SBCFAs. Second, deletion of key genes in competing pathways improved the production of SBCFAs to 387.4 mg/L, a 31.2-fold increase compared to the wild-type. Third, overexpression of the ATP-binding cassette (ABC) transporter PDR12 increased the secretion of SBCFAs. Taken together, we demonstrated that the combinatorial metabolic engineering approach used in this study effectively improved SBCFA biosynthesis in S. cerevisiae through the incorporation of a chromosome-based combinatorial gene overexpression strategy, elimination of genes in competitive pathways and overexpression of a native transporter. We envision that this strategy could also be applied to the production of other chemicals in S. cerevisiae and may be extended to other microbes for strain improvement.
短链脂肪酸(SBCFAs,C4-6)是化学工业中用于生产增值产品的多功能平台中间体。目前,SBCFAs主要通过化学合成,成本高昂且可能造成环境污染。为了开发一种经济环保的SBCFA生产路线,我们对具有工业意义的真核微生物模式菌株酿酒酵母进行了工程改造,以实现SBCFAs的过量生产。具体而言,我们采用了组合代谢工程方法来优化酿酒酵母中的天然埃利希途径。首先,基于染色体的组合基因过表达使SBCFAs的产量提高了28.7倍。其次,删除竞争途径中的关键基因将SBCFAs的产量提高到387.4 mg/L,比野生型增加了31.2倍。第三,ATP结合盒(ABC)转运蛋白PDR12的过表达增加了SBCFAs的分泌。综上所述,我们证明了本研究中使用的组合代谢工程方法通过采用基于染色体的组合基因过表达策略、消除竞争途径中的基因以及过表达天然转运蛋白,有效地改善了酿酒酵母中SBCFAs的生物合成。我们设想,这种策略也可应用于酿酒酵母中其他化学品的生产,并可能扩展到其他微生物以进行菌株改良。