Suppr超能文献

用于代谢建模的组学数据输入。

Omics data input for metabolic modeling.

作者信息

Rai Amit, Saito Kazuki

机构信息

Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.

Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan; RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.

出版信息

Curr Opin Biotechnol. 2016 Feb;37:127-134. doi: 10.1016/j.copbio.2015.10.010. Epub 2015 Dec 23.

Abstract

Recent advancements in high-throughput large-scale analytical methods to sequence genomes of organisms, and to quantify gene expression, proteins, lipids and metabolites have changed the paradigm of metabolic modeling. The cost of data generation and analysis has decreased significantly, which has allowed exponential increase in the amount of omics data being generated for an organism in a very short time. Compared to progress made in microbial metabolic modeling, plant metabolic modeling still remains limited due to its complex genomes and compartmentalization of metabolic reactions. Herein, we review and discuss different omics-datasets with potential application in the functional genomics. In particular, this review focuses on the application of omics-datasets towards construction and reconstruction of plant metabolic models.

摘要

用于对生物体基因组进行测序以及对基因表达、蛋白质、脂质和代谢物进行定量分析的高通量大规模分析方法的最新进展,改变了代谢建模的模式。数据生成和分析的成本已大幅降低,这使得在极短时间内为一个生物体生成的组学数据量呈指数级增长。与微生物代谢建模取得的进展相比,植物代谢建模由于其复杂的基因组和代谢反应的区室化而仍然受到限制。在此,我们回顾并讨论了在功能基因组学中具有潜在应用价值的不同组学数据集。特别是,本综述重点关注组学数据集在植物代谢模型构建和重建中的应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验