Hu Jinglei, Xu Guang-Kui, Lipowsky Reinhard, Weikl Thomas R
Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Postdam, Germany.
J Chem Phys. 2015 Dec 28;143(24):243137. doi: 10.1063/1.4936135.
The adhesion of biological membranes is mediated by the binding of membrane-anchored receptor and ligand proteins. Central questions are how the binding kinetics of these proteins is affected by the membranes and by the membrane anchoring of the proteins. In this article, we (i) present detailed data for the binding of membrane-anchored proteins from coarse-grained molecular dynamics simulations and (ii) provide a theory that describes how the binding kinetics depends on the average separation and thermal roughness of the adhering membranes and on the anchoring, lengths, and length variations of the proteins. An important element of our theory is the tilt of bound receptor-ligand complexes and transition-state complexes relative to the membrane normals. This tilt results from an interplay of the anchoring energy and rotational entropy of the complexes and facilitates the formation of receptor-ligand bonds at membrane separations smaller than the preferred separation for binding. In our simulations, we have considered both lipid-anchored and transmembrane receptor and ligand proteins. We find that the binding equilibrium constant and binding on-rate constant of lipid-anchored proteins are considerably smaller than the binding constant and on-rate constant of rigid transmembrane proteins with identical binding domains.
生物膜的黏附是由膜锚定受体和配体蛋白的结合介导的。核心问题是这些蛋白质的结合动力学如何受到膜以及蛋白质膜锚定的影响。在本文中,我们(i)展示了来自粗粒度分子动力学模拟的膜锚定蛋白结合的详细数据,并且(ii)提供了一种理论,该理论描述了结合动力学如何取决于黏附膜的平均间距和热粗糙度,以及蛋白质的锚定、长度和长度变化。我们理论的一个重要元素是结合的受体 - 配体复合物和过渡态复合物相对于膜法线的倾斜。这种倾斜是由复合物的锚定能量和旋转熵相互作用产生的,并且有助于在小于结合的优选间距的膜间距处形成受体 - 配体键。在我们的模拟中,我们考虑了脂质锚定和跨膜受体及配体蛋白。我们发现脂质锚定蛋白的结合平衡常数和结合正向速率常数明显小于具有相同结合结构域的刚性跨膜蛋白的结合常数和正向速率常数。