Banani Houda, Marcet-Houben Marina, Ballester Ana-Rosa, Abbruscato Pamela, González-Candelas Luis, Gabaldón Toni, Spadaro Davide
DiSAFA - Dept. Agricultural, Forestry and Food Sciences and AGROINNOVA - Centre of Competence for the Innovation in the Agroenvironmental Sector, University of Torino, Largo Paolo Braccini 2, I-10095 Grugliasco, Torino, Italy.
Bioinformatics and Genomics Programme. Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain.
BMC Genomics. 2016 Jan 5;17:19. doi: 10.1186/s12864-015-2347-x.
Penicillium griseofulvum is associated in stored apples with blue mould, the most important postharvest disease of pome fruit. This pathogen can simultaneously produce both detrimental and beneficial secondary metabolites (SM). In order to gain insight into SM synthesis in P. griseofulvum in vitro and during disease development on apple, we sequenced the genome of P. griseofulvum strain PG3 and analysed important SM clusters.
PG3 genome sequence (29.3 Mb) shows that P. griseofulvum branched off after the divergence of P. oxalicum but before the divergence of P. chrysogenum. Genome-wide analysis of P. griseofulvum revealed putative gene clusters for patulin, griseofulvin and roquefortine C biosynthesis. Furthermore, we quantified the SM production in vitro and on apples during the course of infection. The expression kinetics of key genes of SM produced in infected apple were examined. We found additional SM clusters, including those potentially responsible for the synthesis of penicillin, yanuthone D, cyclopiazonic acid and we predicted a cluster putatively responsible for the synthesis of chanoclavine I.
These findings provide relevant information to understand the molecular basis of SM biosynthesis in P. griseofulvum, to allow further research directed to the overexpression or blocking the synthesis of specific SM.
灰黄青霉与贮藏苹果中的青霉病有关,青霉病是梨果采后最重要的病害。这种病原菌能同时产生有害和有益的次生代谢产物(SM)。为了深入了解灰黄青霉在体外及苹果病害发展过程中的次生代谢产物合成情况,我们对灰黄青霉菌株PG3的基因组进行了测序,并分析了重要的次生代谢产物簇。
PG3基因组序列(29.3 Mb)表明,灰黄青霉在草酸青霉分化后但在产黄青霉分化前分支出来。对灰黄青霉的全基因组分析揭示了棒曲霉素、灰黄霉素和罗克福汀C生物合成的推定基因簇。此外,我们对感染过程中体外和苹果上的次生代谢产物产量进行了定量。研究了感染苹果中产生的次生代谢产物关键基因的表达动力学。我们发现了其他次生代谢产物簇,包括可能负责青霉素、亚努酮D、环匹阿尼酸合成的那些簇,并预测了一个可能负责合成棒麦角黄素I的簇。
这些发现为理解灰黄青霉次生代谢产物生物合成的分子基础提供了相关信息,以便进一步开展针对特定次生代谢产物过表达或合成阻断的研究。