Arkema Elizabeth V, Jönsen Andreas, Rönnblom Lars, Svenungsson Elisabet, Sjöwall Christopher, Simard Julia F
Clinical Epidemiology Unit, Department of Medicine, Solna Karolinska Institute, Stockholm, Sweden.
Department of Clinical Sciences, Lund University, Lund, Sweden.
BMJ Open. 2016 Jan 4;6(1):e007769. doi: 10.1136/bmjopen-2015-007769.
To develop and investigate the utility of several different case definitions for systemic lupus erythematosus (SLE) using national register data in Sweden.
The reference standard consisted of clinically confirmed SLE cases pooled from four major clinical centres in Sweden (n=929), and a sample of non-SLE comparators randomly selected from the National Population Register (n=24,267). Demographics, comorbidities, prescriptions and autoimmune disease family history were obtained from multiple registers and linked to the reference standard. We first used previously published SLE definitions to create algorithms for SLE. We also used modern data mining techniques (penalised least absolute shrinkage and selection operator logistic regression, elastic net regression and classification trees) to objectively create data-driven case definitions. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were calculated for the case definitions identified.
Defining SLE by using only hospitalisation data resulted in the lowest sensitivity (0.79). When SLE codes from the outpatient register were included, sensitivity and PPV increased (PPV between 0.97 and 0.98, sensitivity between 0.97 and 0.99). Addition of medication information did not greatly improve the algorithm's performance. The application of data mining methods did not yield different case definitions.
The use of SLE International Classification of Diseases (ICD) codes in outpatient clinics increased the accuracy for identifying individuals with SLE using Swedish registry data. This study implies that it is possible to use ICD codes from national registers to create a cohort of individuals with SLE.
利用瑞典国家登记数据开发并研究几种不同的系统性红斑狼疮(SLE)病例定义的效用。
参考标准由从瑞典四个主要临床中心汇总的临床确诊SLE病例(n = 929)以及从国家人口登记处随机选取的非SLE对照样本(n = 24,267)组成。从多个登记处获取人口统计学、合并症、处方和自身免疫性疾病家族史,并将其与参考标准相链接。我们首先使用先前发表的SLE定义来创建SLE算法。我们还使用现代数据挖掘技术(惩罚最小绝对收缩和选择算子逻辑回归、弹性网回归和分类树)来客观地创建数据驱动的病例定义。对所确定的病例定义计算敏感性、特异性、阳性预测值(PPV)和阴性预测值(NPV)。
仅使用住院数据定义SLE导致最低的敏感性(0.79)。当纳入门诊登记处SLE编码时,敏感性和PPV增加(PPV在0.97至0.98之间,敏感性在0.97至0.99之间)。添加用药信息并未显著改善算法性能。数据挖掘方法的应用未产生不同的病例定义。
门诊诊所使用SLE国际疾病分类(ICD)编码提高了利用瑞典登记数据识别SLE患者的准确性。本研究表明,利用国家登记处的ICD编码来创建SLE患者队列是可行的。