Suppr超能文献

一种在概念特征空间中利用视觉性和空间信息进行基于交互式感兴趣区域检索的生物医学图像表示方法。

Biomedical image representation approach using visualness and spatial information in a concept feature space for interactive region-of-interest-based retrieval.

作者信息

Rahman Md Mahmudur, Antani Sameer K, Demner-Fushman Dina, Thoma George R

机构信息

Morgan State University , Computer Science Department, Calloway 308, 1700 E Cold Spring Lane, Baltimore, Maryland 21251, United States.

U.S. National Library of Medicine , National Institutes of Health, 8600 Rockville Pike, Bethesda, Maryland 20894, United States.

出版信息

J Med Imaging (Bellingham). 2015 Oct;2(4):046502. doi: 10.1117/1.JMI.2.4.046502. Epub 2015 Dec 30.

Abstract

This article presents an approach to biomedical image retrieval by mapping image regions to local concepts where images are represented in a weighted entropy-based concept feature space. The term "concept" refers to perceptually distinguishable visual patches that are identified locally in image regions and can be mapped to a glossary of imaging terms. Further, the visual significance (e.g., visualness) of concepts is measured as the Shannon entropy of pixel values in image patches and is used to refine the feature vector. Moreover, the system can assist the user in interactively selecting a region-of-interest (ROI) and searching for similar image ROIs. Further, a spatial verification step is used as a postprocessing step to improve retrieval results based on location information. The hypothesis that such approaches would improve biomedical image retrieval is validated through experiments on two different data sets, which are collected from open access biomedical literature.

摘要

本文提出了一种生物医学图像检索方法,该方法通过将图像区域映射到局部概念,其中图像在基于加权熵的概念特征空间中进行表示。术语“概念”指的是在图像区域中局部识别出的可感知区分的视觉块,并且可以映射到成像术语词汇表。此外,概念的视觉显著性(例如,可视性)被测量为图像块中像素值的香农熵,并用于细化特征向量。而且,该系统可以帮助用户交互式地选择感兴趣区域(ROI)并搜索相似的图像ROI。此外,空间验证步骤用作后处理步骤,以基于位置信息改善检索结果。通过对从开放获取生物医学文献中收集的两个不同数据集进行实验,验证了此类方法将改善生物医学图像检索的假设。

相似文献

9
Interactive radiographic image retrieval system.交互式放射影像检索系统。
Comput Methods Programs Biomed. 2017 Feb;139:209-220. doi: 10.1016/j.cmpb.2016.10.023. Epub 2016 Dec 14.

本文引用的文献

1
Literature-based biomedical image classification and retrieval.基于文献的生物医学图像分类与检索。
Comput Med Imaging Graph. 2015 Jan;39:3-13. doi: 10.1016/j.compmedimag.2014.06.006. Epub 2014 Jun 20.
4
Learning semantic and visual similarity for endomicroscopy video retrieval.学习内窥镜视频检索的语义和视觉相似性。
IEEE Trans Med Imaging. 2012 Jun;31(6):1276-88. doi: 10.1109/TMI.2012.2188301. Epub 2012 Feb 16.
7
Annotation and retrieval of clinically relevant images.临床相关图像的标注与检索。
Int J Med Inform. 2009 Dec;78(12):e59-67. doi: 10.1016/j.ijmedinf.2009.05.003. Epub 2009 Jul 9.
8
SPIRS: a Web-based image retrieval system for large biomedical databases.SPIRS:一个用于大型生物医学数据库的基于网络的图像检索系统。
Int J Med Inform. 2009 Apr;78 Suppl 1(Suppl 1):S13-24. doi: 10.1016/j.ijmedinf.2008.09.006. Epub 2008 Nov 8.
10
Fleischner Society: glossary of terms for thoracic imaging.弗莱施纳学会:胸部影像学术语词汇表。
Radiology. 2008 Mar;246(3):697-722. doi: 10.1148/radiol.2462070712. Epub 2008 Jan 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验