Suppr超能文献

用于全基因组关联研究(GWAS)和序列比较计算的安全分布式基因组分析。

Secure distributed genome analysis for GWAS and sequence comparison computation.

作者信息

Zhang Yihua, Blanton Marina, Almashaqbeh Ghada

出版信息

BMC Med Inform Decis Mak. 2015;15 Suppl 5(Suppl 5):S4. doi: 10.1186/1472-6947-15-S5-S4. Epub 2015 Dec 21.

Abstract

BACKGROUND

The rapid increase in the availability and volume of genomic data makes significant advances in biomedical research possible, but sharing of genomic data poses challenges due to the highly sensitive nature of such data. To address the challenges, a competition for secure distributed processing of genomic data was organized by the iDASH research center.

METHODS

In this work we propose techniques for securing computation with real-life genomic data for minor allele frequency and chi-squared statistics computation, as well as distance computation between two genomic sequences, as specified by the iDASH competition tasks. We put forward novel optimizations, including a generalization of a version of mergesort, which might be of independent interest.

RESULTS

We provide implementation results of our techniques based on secret sharing that demonstrate practicality of the suggested protocols and also report on performance improvements due to our optimization techniques.

CONCLUSIONS

This work describes our techniques, findings, and experimental results developed and obtained as part of iDASH 2015 research competition to secure real-life genomic computations and shows feasibility of securely computing with genomic data in practice.

摘要

背景

基因组数据的可获取性和数量迅速增加,使得生物医学研究取得重大进展成为可能,但由于此类数据具有高度敏感性,基因组数据的共享带来了挑战。为应对这些挑战,iDASH研究中心组织了一场基因组数据安全分布式处理竞赛。

方法

在这项工作中,我们提出了一些技术,用于保护使用实际基因组数据进行的计算,以进行次要等位基因频率和卡方统计计算,以及如iDASH竞赛任务所规定的两个基因组序列之间的距离计算。我们提出了新颖的优化方法,包括对归并排序版本的推广,这可能具有独立的研究价值。

结果

我们提供了基于秘密共享的技术实现结果,证明了所建议协议的实用性,并报告了由于我们的优化技术而带来的性能提升。

结论

这项工作描述了我们作为iDASH 2015研究竞赛的一部分所开发和获得的技术、发现及实验结果,以确保实际基因组计算的安全性,并展示了在实践中对基因组数据进行安全计算的可行性。

相似文献

2
FORESEE: Fully Outsourced secuRe gEnome Study basEd on homomorphic Encryption.FORESEE:基于同态加密的全外包安全基因组研究
BMC Med Inform Decis Mak. 2015;15 Suppl 5(Suppl 5):S5. doi: 10.1186/1472-6947-15-S5-S5. Epub 2015 Dec 21.
6
SAFETY: Secure gwAs in Federated Environment through a hYbrid Solution.安全性:通过混合解决方案确保联邦环境中的安全 gwAs。
IEEE/ACM Trans Comput Biol Bioinform. 2019 Jan-Feb;16(1):93-102. doi: 10.1109/TCBB.2018.2829760. Epub 2018 Apr 24.
10
Privacy-preserving GWAS analysis on federated genomic datasets.联邦基因组数据集上的隐私保护全基因组关联研究分析
BMC Med Inform Decis Mak. 2015;15 Suppl 5(Suppl 5):S2. doi: 10.1186/1472-6947-15-S5-S2. Epub 2015 Dec 21.

引用本文的文献

5
Privacy-Preserving Artificial Intelligence Techniques in Biomedicine.生物医学中的隐私保护人工智能技术。
Methods Inf Med. 2022 Jun;61(S 01):e12-e27. doi: 10.1055/s-0041-1740630. Epub 2022 Jan 21.
7
Big Data Privacy in Biomedical Research.生物医学研究中的大数据隐私
IEEE Trans Big Data. 2020 Jun;6(2):296-308. doi: 10.1109/TBDATA.2016.2608848. Epub 2016 Sep 13.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验