Suppr超能文献

DNA 催化剂的晶体结构。

Crystal structure of a DNA catalyst.

机构信息

Max Planck Research Group Nucleic Acid Chemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.

Research Group Macromolecular Crystallography, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.

出版信息

Nature. 2016 Jan 14;529(7585):231-4. doi: 10.1038/nature16471. Epub 2016 Jan 6.

Abstract

Catalysis in biology is restricted to RNA (ribozymes) and protein enzymes, but synthetic biomolecular catalysts can also be made of DNA (deoxyribozymes) or synthetic genetic polymers. In vitro selection from synthetic random DNA libraries identified DNA catalysts for various chemical reactions beyond RNA backbone cleavage. DNA-catalysed reactions include RNA and DNA ligation in various topologies, hydrolytic cleavage and photorepair of DNA, as well as reactions of peptides and small molecules. In spite of comprehensive biochemical studies of DNA catalysts for two decades, fundamental mechanistic understanding of their function is lacking in the absence of three-dimensional models at atomic resolution. Early attempts to solve the crystal structure of an RNA-cleaving deoxyribozyme resulted in a catalytically irrelevant nucleic acid fold. Here we report the crystal structure of the RNA-ligating deoxyribozyme 9DB1 (ref. 14) at 2.8 Å resolution. The structure captures the ligation reaction in the post-catalytic state, revealing a compact folding unit stabilized by numerous tertiary interactions, and an unanticipated organization of the catalytic centre. Structure-guided mutagenesis provided insights into the basis for regioselectivity of the ligation reaction and allowed remarkable manipulation of substrate recognition and reaction rate. Moreover, the structure highlights how the specific properties of deoxyribose are reflected in the backbone conformation of the DNA catalyst, in support of its intricate three-dimensional organization. The structural principles underlying the catalytic ability of DNA elucidate differences and similarities in DNA versus RNA catalysts, which is relevant for comprehending the privileged position of folded RNA in the prebiotic world and in current organisms.

摘要

生物学中的催化作用仅限于 RNA(核酶)和蛋白质酶,但也可以使用 DNA(脱氧核酶)或合成遗传聚合物来制造合成生物分子催化剂。从合成随机 DNA 文库中进行体外选择,鉴定出了可用于各种化学反应的 DNA 催化剂,而不仅仅是 RNA 骨架切割。DNA 催化的反应包括各种拓扑结构的 RNA 和 DNA 连接、DNA 的水解切割和光修复,以及肽和小分子的反应。尽管对 DNA 催化剂进行了二十年的全面生化研究,但由于缺乏原子分辨率的三维模型,其功能的基本机制理解仍然缺乏。早期解决 RNA 切割脱氧核酶晶体结构的尝试导致了催化无关的核酸折叠。在这里,我们报告了 RNA 连接脱氧核酶 9DB1(参考文献 14)在 2.8 Å分辨率下的晶体结构。该结构捕获了催化后状态的连接反应,揭示了一个由许多三级相互作用稳定的紧凑折叠单元,以及催化中心的意外组织。结构引导的突变提供了对连接反应区域选择性的基础的深入了解,并允许对底物识别和反应速率进行显著的操作。此外,该结构突出了脱氧核糖的特定性质如何反映在 DNA 催化剂的骨架构象中,这支持了其复杂的三维组织。阐明 DNA 催化能力的结构原则阐明了 DNA 与 RNA 催化剂之间的差异和相似之处,这对于理解折叠 RNA 在原始生命世界和当前生物体中的特权地位具有重要意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验