Arevalo John, Gonzalez Fabio A, Ramos-Pollan Raul, Oliveira Jose L, Guevara Lopez Miguel Angel
Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:797-800. doi: 10.1109/EMBC.2015.7318482.
Feature extraction is a fundamental step when mammography image analysis is addressed using learning based approaches. Traditionally, problem dependent handcrafted features are used to represent the content of images. An alternative approach successfully applied in other domains is the use of neural networks to automatically discover good features. This work presents an evaluation of convolutional neural networks to learn features for mammography mass lesions before feeding them to a classification stage. Experimental results showed that this approach is a suitable strategy outperforming the state-of-the-art representation from 79.9% to 86% in terms of area under the ROC curve.
当使用基于学习的方法进行乳腺X线图像分析时,特征提取是一个基本步骤。传统上,依赖于问题的手工制作特征用于表示图像内容。在其他领域成功应用的一种替代方法是使用神经网络自动发现良好的特征。这项工作提出了对卷积神经网络的评估,以便在将乳腺X线摄影肿块病变特征输入分类阶段之前进行学习。实验结果表明,该方法是一种合适的策略,在ROC曲线下面积方面比当前最先进的表示方法提高了79.9%至86%。