Suppr超能文献

一种基于小波分解和变换的新型卷积神经网络,并结合数据增强技术,用于数字乳腺 X 线摄影的乳腺癌检测。

A novel wavelet decomposition and transformation convolutional neural network with data augmentation for breast cancer detection using digital mammogram.

机构信息

School of Mathematics, Statistics, and Computer Science, University of KwaZulu-Natal, King Edward Avenue, Pietermaritzburg Campus, Pietermaritzburg, 3201, KwaZulu-Natal, South Africa.

Depratment of Computer Science, Ahmadu Bello University Zaria-Nigeria, Zaria, Nigeria.

出版信息

Sci Rep. 2022 Apr 8;12(1):5913. doi: 10.1038/s41598-022-09905-3.

Abstract

Research in deep learning (DL) has continued to provide significant solutions to the challenges of detecting breast cancer in digital images. Image preprocessing methods and architecture enhancement techniques have been proposed to improve the performance of DL models such as convolutional neural networks (CNNs). For instance, the wavelet decomposition function has been used for image feature extraction in CNNs due to its strong compactness. Additionally, CNN architectures have been optimized to improve the process of feature detection to support the classification process. However, these approaches still lack completeness, as no mechanism exists to discriminate features to be enhanced and features to be eliminated for feature enhancement. More so, no studies have approached the use of wavelet transform to restructure CNN architectures to improve the detection of discriminant features in digital mammography for increased classification accuracy. Therefore, this study addresses these problems through wavelet-CNN-wavelet architecture. The approach presented in this paper combines seam carving and wavelet decomposition algorithms for image preprocessing to find discriminative features. These features are passed as input to a CNN-wavelet structure that uses the new wavelet transformation function proposed in this paper. The CNN-wavelet architecture applied layers of wavelet transform and reduced feature maps to obtain features suggestive of abnormalities that support the classification process. Meanwhile, we synthesized image samples with architectural distortion using a generative adversarial network (GAN) model to argue for their training datasets' insufficiency. Experimentation of the proposed method was carried out using DDSM + CBIS and MIAS datasets. The results obtained showed that the new method improved the classification accuracy and lowered the loss function values. The study's findings demonstrate the usefulness of the wavelet transform function in restructuring CNN architectures for performance enhancement in detecting abnormalities leading to breast cancer in digital mammography.

摘要

深度学习(DL)的研究持续为数字图像中乳腺癌检测的挑战提供重要解决方案。已经提出了图像预处理方法和架构增强技术,以提高卷积神经网络(CNN)等 DL 模型的性能。例如,由于小波分解函数具有很强的紧凑性,因此已将其用于 CNN 中的图像特征提取。此外,还优化了 CNN 架构以改进特征检测过程,以支持分类过程。然而,这些方法仍然缺乏完整性,因为没有机制可以区分要增强的特征和要消除的特征以进行特征增强。更重要的是,没有研究使用小波变换来重构 CNN 架构,以提高数字乳房 X 线摄影中判别特征的检测能力,从而提高分类准确性。因此,本研究通过小波-CNN-小波架构来解决这些问题。本文提出的方法结合了 seam carving 和小波分解算法来进行图像预处理,以找到判别特征。这些特征作为输入传递到 CNN-小波结构,该结构使用本文提出的新小波变换函数。应用于 CNN-小波架构的小波变换和减少特征图的层用于获得支持分类过程的异常提示特征。同时,我们使用生成对抗网络(GAN)模型对图像样本进行了结构失真的合成,以证明其训练数据集的不足。使用 DDSM + CBIS 和 MIAS 数据集对所提出的方法进行了实验。得到的结果表明,该新方法提高了分类准确性并降低了损失函数值。该研究的结果表明,小波变换函数在重构 CNN 架构以提高检测数字乳房 X 线摄影中乳腺癌导致的异常的性能方面非常有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40af/8993803/f1d530359dbc/41598_2022_9905_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验