Zaitcev Aleksandr, Cook Greg, Paley Martyn, Milne Elizabeth
Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:1773-6. doi: 10.1109/EMBC.2015.7318722.
Brain-Computer Interfaces (BCIs) provide means for communication and control without muscular movement and, therefore, can offer significant clinical benefits. Electrical brain activity recorded by electroencephalography (EEG) can be interpreted into software commands by various classification algorithms according to the descriptive features of the signal. In this paper we propose a novel EEG BCI feature extraction method employing EEG source reconstruction and Filter Bank Common Spatial Patterns (FBCSP) based on Joint Approximate Diagonalization (JAD). The proposed method is evaluated by the commonly used reference EEG dataset yielding an average classification accuracy of 77.1 ± 10.1 %. It is shown that FBCSP feature extraction applied to reconstructed source components outperforms conventional CSP and FBCSP feature extraction methods applied to signals in the sensor domain.
脑机接口(BCIs)提供了无需肌肉运动即可进行通信和控制的手段,因此可以带来显著的临床益处。通过脑电图(EEG)记录的脑电活动可以根据信号的描述特征,由各种分类算法解释为软件命令。在本文中,我们提出了一种基于联合近似对角化(JAD)的采用脑电信号源重建和滤波器组公共空间模式(FBCSP)的新型脑电BCI特征提取方法。通过常用的参考脑电数据集对所提出的方法进行评估,得到的平均分类准确率为77.1±10.1%。结果表明,应用于重建源成分的FBCSP特征提取优于应用于传感器域信号的传统CSP和FBCSP特征提取方法。