Suppr超能文献

利用耳部脑电图开发基于稳态视觉诱发电位的在线脑机接口系统。

Developing an online steady-state visual evoked potential-based brain-computer interface system using EarEEG.

作者信息

Wang Yu-Te, Nakanishi Masaki, Kappel Simon Lind, Kidmose Preben, Mandic Danilo P, Wang Yijun, Cheng Chung-Kuan, Jung Tzyy-Ping

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:2271-4. doi: 10.1109/EMBC.2015.7318845.

Abstract

The purpose of this study is to demonstrate an online steady-state visual evoked potential (SSVEP)-based BCI system using EarEEG. EarEEG is a novel recording concept where electrodes are embedded on the surface of earpieces customized to the individual anatomical shape of users' ear. It has been shown that the EarEEG can be used to record SSVEPs in previous studies. However, a long distance between the visual cortex and the ear makes the signal-to-noise ratio (SNR) of SSVEPs acquired by the EarEEG relatively low. Recently, filter bank- and training data-based canonical correlation analysis algorithms have shown significant performance improvement in terms of accuracy of target detection and information transfer rate (ITR). This study implemented an online four-class SSVEP-based BCI system using EarEEG. Four subjects participated in offline and online BCI experiments. For the offline classification, an average accuracy of 82.71±11.83 % was obtained using 4 sec-long SSVEPs acquired from earpieces. In the online experiment, all subjects successfully completed the tasks with an average accuracy of 87.92±12.10 %, leading to an average ITR of 16.60±6.55 bits/min. The results suggest that EarEEG can be used to perform practical BCI applications. The EarEEG has the potential to be used as a portable EEG recordings platform, that could enable real-world BCI applications.

摘要

本研究的目的是展示一种基于在线稳态视觉诱发电位(SSVEP)的脑机接口(BCI)系统,该系统使用耳部脑电图(EarEEG)。EarEEG是一种新颖的记录概念,其中电极嵌入根据用户耳朵的个体解剖形状定制的耳机表面。在先前的研究中已经表明,EarEEG可用于记录SSVEP。然而,视觉皮层与耳朵之间的距离较远,使得通过EarEEG获取的SSVEP的信噪比(SNR)相对较低。最近,基于滤波器组和训练数据的典型相关分析算法在目标检测准确性和信息传输率(ITR)方面显示出显著的性能提升。本研究实现了一种基于EarEEG的在线四类SSVEP脑机接口系统。四名受试者参与了离线和在线BCI实验。对于离线分类,使用从耳机获取的4秒长的SSVEP,平均准确率为82.71±11.83%。在在线实验中,所有受试者均成功完成任务,平均准确率为87.92±12.10%,平均ITR为16.60±6.55比特/分钟。结果表明,EarEEG可用于实际的BCI应用。EarEEG有潜力用作便携式脑电图记录平台,从而实现现实世界中的BCI应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验