Suppr超能文献

使用耳部脑电图进行自动睡眠监测。

Automatic Sleep Monitoring Using Ear-EEG.

作者信息

Nakamura Takashi, Goverdovsky Valentin, Morrell Mary J, Mandic Danilo P

机构信息

Department of Electrical and Electronic EngineeringImperial College London.

Sleep and Ventilation UnitNational Heart and Lung Institute, Imperial College London.

出版信息

IEEE J Transl Eng Health Med. 2017 Jun 26;5:2800108. doi: 10.1109/JTEHM.2017.2702558. eCollection 2017.

Abstract

The monitoring of sleep patterns without patient's inconvenience or involvement of a medical specialist is a clinical question of significant importance. To this end, we propose an automatic sleep stage monitoring system based on an affordable, unobtrusive, discreet, and long-term wearable in-ear sensor for recording the electroencephalogram (ear-EEG). The selected features for sleep pattern classification from a single ear-EEG channel include the spectral edge frequency and multi-scale fuzzy entropy, a structural complexity feature. In this preliminary study, the manually scored hypnograms from simultaneous scalp-EEG and ear-EEG recordings of four subjects are used as labels for two analysis scenarios: 1) classification of ear-EEG hypnogram labels from ear-EEG recordings; and 2) prediction of scalp-EEG hypnogram labels from ear-EEG recordings. We consider both 2-class and 4-class sleep scoring, with the achieved accuracies ranging from 78.5% to 95.2% for ear-EEG labels predicted from ear-EEG, and 76.8% to 91.8% for scalp-EEG labels predicted from ear-EEG. The corresponding Kappa coefficients range from 0.64 to 0.83 for Scenario 1, and indicate substantial to almost perfect agreement, while for Scenario 2 the range of 0.65-0.80 indicates substantial agreement, thus further supporting the feasibility of in-ear sensing for sleep monitoring in the community.

摘要

在不给患者带来不便且无需医学专家参与的情况下监测睡眠模式是一个非常重要的临床问题。为此,我们提出了一种基于价格实惠、不引人注意、隐秘且可长期佩戴的入耳式传感器的自动睡眠阶段监测系统,用于记录脑电图(耳部脑电图)。从单个耳部脑电图通道中选择用于睡眠模式分类的特征包括频谱边缘频率和多尺度模糊熵,后者是一种结构复杂性特征。在这项初步研究中,将四名受试者同步头皮脑电图和耳部脑电图记录的人工评分睡眠图用作两种分析场景的标签:1)根据耳部脑电图记录对耳部脑电图睡眠图标签进行分类;2)根据耳部脑电图记录预测头皮脑电图睡眠图标签。我们考虑了二分类和四分类睡眠评分,从耳部脑电图预测耳部脑电图标签的准确率在78.5%至95.2%之间,从耳部脑电图预测头皮脑电图标签的准确率在76.8%至91.8%之间。对于场景1,相应的卡帕系数在0.64至0.83之间,表明一致性为实质性至几乎完美,而对于场景2,0.65 - 0.80的范围表明一致性为实质性,从而进一步支持了在社区中使用入耳式传感进行睡眠监测的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29c2/5515509/8ff101d4b563/mandi1ab-2702558.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验