Smith Keith, Azami Hamed, Parra Mario A, Starr John M, Escudero Javier
Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:2840-3. doi: 10.1109/EMBC.2015.7318983.
We propose a new unbiased threshold for network analysis named the Cluster-Span Threshold (CST). This is based on the clustering coefficient, C, following logic that a balance of clustering' to spanning' triples results in a useful topology for network analysis and that the product of complementing properties has a unique value only when perfectly balanced. We threshold networks by fixing C at this balanced value, rather than fixing connection density at an arbitrary value, as has been the trend. We compare results from an electroencephalogram data set of volunteers performing visual short term memory tasks of the CST alongside other thresholds, including maximum spanning trees. We find that the CST holds as a sensitive threshold for distinguishing differences in the functional connectivity between tasks. This provides a sensitive and objective method for setting a threshold on weighted complete networks which may prove influential on the future of functional connectivity research.
我们提出了一种用于网络分析的新的无偏阈值,称为聚类跨度阈值(CST)。这是基于聚类系数C,其逻辑是“聚类”三元组与“跨度”三元组的平衡会产生一个对网络分析有用的拓扑结构,并且互补属性的乘积只有在完美平衡时才有唯一值。我们通过将C固定在这个平衡值来对网络进行阈值处理,而不是像以往那样将连接密度固定在任意值。我们将执行视觉短期记忆任务的志愿者的脑电图数据集应用CST以及其他阈值(包括最大生成树)的结果进行了比较。我们发现CST作为区分任务之间功能连接差异的敏感阈值成立。这为加权完全网络设置阈值提供了一种敏感且客观的方法,这可能会对功能连接研究的未来产生影响。