Escudero Javier, Smith Keith, Azami Hamed, Abasolo Daniel
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:2810-2813. doi: 10.1109/EMBC.2016.7591314.
Functional connectivity has proven useful to characterise electroencephalogram (EEG) activity in Alzheimer's disease (AD). However, most current functional connectivity analyses have been static, disregarding any potential variability of the connectivity with time. In this pilot study, we compute short-time resting state EEG functional connectivity based on the imaginary part of coherency for 12 AD patients and 11 controls. We derive binary unweighted graphs using the cluster-span threshold, an objective binary threshold. For each short-time binary graph, we calculate its local clustering coefficient (Cloc), degree (K), and efficiency (E). The distribution of these graph metrics for each participant is then characterised with four statistical moments: mean, variance, skewness, and kurtosis. The results show significant differences between groups in the mean of K and E, and the kurtosis of Cloc and K. Although not significant when considered alone, the skewness of Cloc is the most frequently selected feature for the discrimination of subject groups. These results suggest that the variability of EEG functional connectivity may convey useful information about AD.
功能连接已被证明有助于表征阿尔茨海默病(AD)中的脑电图(EEG)活动。然而,目前大多数功能连接分析都是静态的,忽略了连接性随时间的任何潜在变化。在这项初步研究中,我们基于12名AD患者和11名对照的相干性虚部计算了短时静息态EEG功能连接。我们使用聚类跨度阈值(一种客观的二元阈值)得出二元无加权图。对于每个短时二元图,我们计算其局部聚类系数(Cloc)、度(K)和效率(E)。然后用四个统计矩(均值、方差、偏度和峰度)来表征每个参与者这些图指标的分布。结果显示,K和E的均值以及Cloc和K的峰度在组间存在显著差异。尽管单独考虑时不显著,但Cloc的偏度是区分受试者组最常选择的特征。这些结果表明,EEG功能连接的变异性可能传达有关AD的有用信息。