Arico Pietro, Borghini Gianluca, Di Flumeri Gianluca, Colosimo Alfredo, Graziani Ilenia, Imbert Jean-Paul, Granger Geraud, Benhacene Railene, Terenzi Michela, Pozzi Simone, Babiloni Fabio
Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:7242-5. doi: 10.1109/EMBC.2015.7320063.
Machine-learning approaches for mental workload (MW) estimation by using the user brain activity went through a rapid expansion in the last decades. In fact, these techniques allow now to measure the MW with a high time resolution (e.g. few seconds). Despite such advancements, one of the outstanding problems of these techniques regards their ability to maintain a high reliability over time (e.g. high accuracy of classification even across consecutive days) without performing any recalibration procedure. Such characteristic will be highly desirable in real world applications, in which human operators could use such approach without undergo a daily training of the device. In this work, we reported that if a simple classifier is calibrated by using a low number of brain spectral features, between those ones strictly related to the MW (i.e. Frontal and Occipital Theta and Parietal Alpha rhythms), those features will make the classifier performance stable over time. In other words, the discrimination accuracy achieved by the classifier will not degrade significantly across different days (i.e. until one week). The methodology has been tested on twelve Air Traffic Controls (ATCOs) trainees while performing different Air Traffic Management (ATM) scenarios under three different difficulty levels.
在过去几十年中,利用用户大脑活动进行心理负荷(MW)估计的机器学习方法迅速发展。事实上,现在这些技术能够以高时间分辨率(例如几秒)来测量心理负荷。尽管有这些进展,但这些技术的一个突出问题是它们在不进行任何重新校准程序的情况下,能否长期保持高可靠性(例如即使连续几天分类准确率也很高)。在实际应用中,这一特性将非常可取,因为在实际应用中,操作人员可以使用这种方法,而无需每天对设备进行训练。在这项工作中,我们报告称,如果使用少量与心理负荷严格相关的大脑频谱特征(即额叶和枕叶θ波以及顶叶α波节律)对一个简单分类器进行校准,这些特征将使分类器的性能随时间保持稳定。换句话说,分类器实现的判别准确率在不同日期(即直到一周)不会显著下降。该方法已在12名空中交通管制(ATCO)学员身上进行了测试,这些学员在三种不同难度级别下执行不同的空中交通管理(ATM)场景。