Suppr超能文献

监测专业和职业操作人员的绩效。

Monitoring performance of professional and occupational operators.

作者信息

Borghini Gianluca, Ronca Vincenzo, Vozzi Alessia, Aricò Pietro, Di Flumeri Gianluca, Babiloni Fabio

机构信息

Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy; Brainsigns srl, Rome, Italy.

Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy; Brainsigns srl, Rome, Italy.

出版信息

Handb Clin Neurol. 2020;168:199-205. doi: 10.1016/B978-0-444-63934-9.00015-9.

Abstract

The human capacity to simultaneously perform several tasks depends on the quantity and the mode of mentally processing the information imposed by the tasks. Since operational environments are highly dynamic, priorities across tasks will be expected to change as the mission evolves, thus the capability to reallocate the mental resources dynamically depending on such changes is very important. The resources required in very complex situations, such as air traffic management (ATM), can exceed the user's available resources leading to increased workload and performance impairments. In this regard, the availability of information concerning the workload experienced by the operators while dealing with tasks will be fundamental for both warning them when overload conditions are approaching and improving interactions with the system. The idea of our work was to use neurophysiologic data collected from professional air traffic controllers (ATCOs) to provide additional information to standard measures with which to assess the ATCOs' expertise and a machine learning electroencephalography-based index to evaluate their mental workload during the execution of ATC tasks. The results showed that the proposed method was able to track the workload alongside the execution of the realistic ATM scenario, and provide added values to objectively assess the expertise of the ATCOs.

摘要

人类同时执行多项任务的能力取决于对任务所施加信息进行心理处理的数量和方式。由于操作环境高度动态,随着任务的推进,各项任务的优先级预计会发生变化,因此根据此类变化动态重新分配心理资源的能力非常重要。在诸如空中交通管理(ATM)等非常复杂的情况下,所需资源可能会超过用户可用资源,从而导致工作量增加和性能受损。在这方面,有关操作员在处理任务时所经历工作量的信息可用性,对于在过载情况临近时向他们发出警告以及改善与系统的交互至关重要。我们这项工作的想法是利用从专业空中交通管制员(ATCO)收集的神经生理数据,为评估ATCO专业知识的标准措施提供额外信息,并提供一个基于机器学习脑电图的指标,以评估他们在执行空中交通管制任务期间的心理工作量。结果表明,所提出的方法能够在实际空中交通管理场景的执行过程中跟踪工作量,并为客观评估ATCO的专业知识提供附加值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验