Schiecke Karin, Pester Britta, Feucht Martha, Leistritz Lutz, Witte Herbert
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:7418-21. doi: 10.1109/EMBC.2015.7320106.
In neuroscience, data are typically generated from neural network activity. Complex interactions between measured time series are involved, and nothing or only little is known about the underlying dynamic system. Convergent Cross Mapping (CCM) provides the possibility to investigate nonlinear causal interactions between time series by using nonlinear state space reconstruction. Aim of this study is to investigate the general applicability, and to show potentials and limitation of CCM. Influence of estimation parameters could be demonstrated by means of simulated data, whereas interval-based application of CCM on real data could be adapted for the investigation of interactions between heart rate and specific EEG components of children with temporal lobe epilepsy.
在神经科学中,数据通常由神经网络活动生成。测量的时间序列之间存在复杂的相互作用,而对于潜在的动态系统却知之甚少或几乎一无所知。收敛交叉映射(CCM)提供了通过使用非线性状态空间重构来研究时间序列之间非线性因果相互作用的可能性。本研究的目的是探讨CCM的一般适用性,并展示其潜力和局限性。通过模拟数据可以证明估计参数的影响,而基于区间的CCM在实际数据上的应用可适用于研究颞叶癫痫患儿心率与特定脑电图成分之间的相互作用。