Wendling F, Bartolomei F, Bellanger J J, Chauvel P
Laboratoire Traitement du Signal et de L'Image - INSERM, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France.
Clin Neurophysiol. 2001 Jul;112(7):1201-18. doi: 10.1016/s1388-2457(01)00547-8.
This paper presents a neurophysiologically relevant model in which vectorial epileptiform electroencephalographic (EEG) signals are produced from multiple coupled neural populations. This model is used to evaluate the performances of non-linear regression analysis as a method to characterize couplings between neural populations from EEG signals they produce. Two quantities, estimated on generated signals, namely the non-linear correlation coefficient and the direction index, are related to the degree and direction of coupling parameters of the model. Their statistical behavior is first studied on a set of signals simulated for relevant configurations of the model. They are then measured on real stereoelectroencephalographic (SEEG) signals. Results obtained in three patients suffering from temporal lobe epilepsy (TLE) show that abnormal functional couplings between cerebral structures, that establish during seizures, can be interpreted in terms of causality. Perspectives are oriented to the identification of epileptogenic networks in TLE.
本文提出了一种与神经生理学相关的模型,其中矢量形式的癫痫样脑电图(EEG)信号由多个耦合的神经群体产生。该模型用于评估非线性回归分析作为一种从神经群体产生的EEG信号中表征神经群体之间耦合的方法的性能。在生成的信号上估计的两个量,即非线性相关系数和方向指数,与模型耦合参数的程度和方向有关。首先在为模型的相关配置模拟的一组信号上研究它们的统计行为。然后在真实的立体脑电图(SEEG)信号上对它们进行测量。在三名颞叶癫痫(TLE)患者中获得的结果表明,癫痫发作期间大脑结构之间建立的异常功能耦合可以用因果关系来解释。研究方向是识别TLE中的致痫网络。