Suppr超能文献

利用改进的高斯过程收敛交叉映射从心电图信号中发现因果关系

DISCOVERING CAUSALITIES FROM CARDIOTOCOGRAPHY SIGNALS USING IMPROVED CONVERGENT CROSS MAPPING WITH GAUSSIAN PROCESSES.

作者信息

Feng Guanchao, Quirk J Gerald, Djurić Petar M

机构信息

Department of Electrical and Computer Engineering, Stony Brook University.

Department of Obstetrics/Gynecology, Stony Brook University Hospital.

出版信息

Proc IEEE Int Conf Acoust Speech Signal Process. 2020 May;2020:1309-1313. doi: 10.1109/ICASSP40776.2020.9053462. Epub 2020 May 14.

Abstract

Convergent cross mapping (CCM) is designed for causal discovery in coupled time series, where Granger causality may not be applicable because of a separability assumption. However, CCM is not robust to observation noise which limits its applicability on signals that are known to be noisy. Moreover, the parameters for state space reconstruction need to be selected using grid search methods. In this paper, we propose a novel improved version of CCM using Gaussian processes for discovery of causality from noisy time series. Specifically, we adopt the concept of CCM and carry out the key steps using Gaussian processes within a non-parametric Bayesian probabilistic framework in a principled manner. The proposed approach is first validated on simulated data, and then used for understanding the interaction between fetal heart rate and uterine activity in the last two hours before delivery and of interest in obstetrics. Our results indicate that uterine activity affects the fetal heart rate, which agrees with recent clinical studies.

摘要

收敛交叉映射(CCM)旨在用于耦合时间序列中的因果发现,由于可分离性假设,格兰杰因果关系在这种情况下可能不适用。然而,CCM对观测噪声不鲁棒,这限制了其在已知有噪声信号上的适用性。此外,状态空间重构的参数需要使用网格搜索方法来选择。在本文中,我们提出了一种使用高斯过程的CCM改进版本,用于从有噪声的时间序列中发现因果关系。具体来说,我们采用CCM的概念,并在非参数贝叶斯概率框架内以原则性的方式使用高斯过程执行关键步骤。所提出的方法首先在模拟数据上进行验证,然后用于理解分娩前最后两小时胎儿心率与子宫活动之间的相互作用,这在产科领域具有重要意义。我们的结果表明子宫活动会影响胎儿心率,这与最近的临床研究结果一致。

相似文献

1
DISCOVERING CAUSALITIES FROM CARDIOTOCOGRAPHY SIGNALS USING IMPROVED CONVERGENT CROSS MAPPING WITH GAUSSIAN PROCESSES.
Proc IEEE Int Conf Acoust Speech Signal Process. 2020 May;2020:1309-1313. doi: 10.1109/ICASSP40776.2020.9053462. Epub 2020 May 14.
2
Detecting Causality using Deep Gaussian Processes.
Conf Rec Asilomar Conf Signals Syst Comput. 2019 Nov;2019:472-476. doi: 10.1109/IEEECONF44664.2019.9048963. Epub 2020 Mar 30.
3
INFERENCE ABOUT CAUSALITY FROM CARDIOTOCOGRAPHY SIGNALS USING GAUSSIAN PROCESSES.
Proc IEEE Int Conf Acoust Speech Signal Process. 2019 May;2019:2852-2856. doi: 10.1109/icassp.2019.8683052. Epub 2019 Apr 17.
4
Exploiting Causality for Improved Prediction of Patient Volumes by Gaussian Processes.
IEEE J Biomed Health Inform. 2021 Jul;25(7):2487-2496. doi: 10.1109/JBHI.2021.3089459. Epub 2021 Jul 27.
6
[Convergent cross mapping method and its application in ecology].
Ying Yong Sheng Tai Xue Bao. 2021 Dec;32(12):4539-4548. doi: 10.13287/j.1001-9332.202112.036.
7
Limits to Causal Inference with State-Space Reconstruction for Infectious Disease.
PLoS One. 2016 Dec 28;11(12):e0169050. doi: 10.1371/journal.pone.0169050. eCollection 2016.
9
Causalized Convergent Cross Mapping and Its Implementation in Causality Analysis.
Entropy (Basel). 2024 Jun 24;26(7):539. doi: 10.3390/e26070539.
10
Causalized convergent cross-mapping and its approximate equivalence with directed information in causality analysis.
PNAS Nexus. 2023 Dec 7;3(1):pgad422. doi: 10.1093/pnasnexus/pgad422. eCollection 2024 Jan.

引用本文的文献

1
Cardiotocography analysis by empirical dynamic modeling and Gaussian processes.
Front Bioeng Biotechnol. 2023 Jan 12;10:1057807. doi: 10.3389/fbioe.2022.1057807. eCollection 2022.
2
UNSUPERVISED CLUSTERING AND ANALYSIS OF CONTRACTION-DEPENDENT FETAL HEART RATE SEGMENTS.
Proc IEEE Int Conf Acoust Speech Signal Process. 2022 May;2022. doi: 10.1109/icassp43922.2022.9747598. Epub 2022 Apr 27.
3
Unsupervised Detection of Anomalies in Fetal Heart Rate Tracings using Phase Space Reconstruction.
Proc Eur Signal Process Conf EUSIPCO. 2021 Aug;2021:1321-1325. doi: 10.23919/eusipco54536.2021.9616264. Epub 2021 Dec 8.

本文引用的文献

1
INFERENCE ABOUT CAUSALITY FROM CARDIOTOCOGRAPHY SIGNALS USING GAUSSIAN PROCESSES.
Proc IEEE Int Conf Acoust Speech Signal Process. 2019 May;2019:2852-2856. doi: 10.1109/icassp.2019.8683052. Epub 2019 Apr 17.
3
Effect of uterine contractions on fetal heart rate in pregnancy: a prospective observational study.
Acta Obstet Gynecol Scand. 2016 Oct;95(10):1129-35. doi: 10.1111/aogs.12949.
4
Convergent Cross Mapping: Basic concept, influence of estimation parameters and practical application.
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:7418-21. doi: 10.1109/EMBC.2015.7320106.
5
6
FIGO consensus guidelines on intrapartum fetal monitoring: Cardiotocography.
Int J Gynaecol Obstet. 2015 Oct;131(1):13-24. doi: 10.1016/j.ijgo.2015.06.020.
7
Detecting causality from nonlinear dynamics with short-term time series.
Sci Rep. 2014 Dec 12;4:7464. doi: 10.1038/srep07464.
9
Open access intrapartum CTG database.
BMC Pregnancy Childbirth. 2014 Jan 13;14:16. doi: 10.1186/1471-2393-14-16.
10
Causal inference with multiple time series: principles and problems.
Philos Trans A Math Phys Eng Sci. 2013 Jul 15;371(1997):20110613. doi: 10.1098/rsta.2011.0613. Print 2013 Aug 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验