Vasconcelos Bruno, Stancu Ilie-Cosmin, Buist Arjan, Bird Matthew, Wang Peng, Vanoosthuyse Alexandre, Van Kolen Kristof, Verheyen An, Kienlen-Campard Pascal, Octave Jean-Noël, Baatsen Peter, Moechars Diederik, Dewachter Ilse
Alzheimer Dementia Group, Institute of Neuroscience, Catholic University of Louvain, 1200, Brussels, Belgium.
Department of Neuroscience, Janssen Research and Development, A Division of Janssen Pharmaceutica NV, 2340, Beerse, Belgium.
Acta Neuropathol. 2016 Apr;131(4):549-69. doi: 10.1007/s00401-015-1525-x. Epub 2016 Jan 6.
Genetic, clinical, histopathological and biomarker data strongly support Beta-amyloid (Aβ) induced spreading of Tau-pathology beyond entorhinal cortex (EC), as a crucial process in conversion from preclinical cognitively normal to Alzheimer's Disease (AD), while the underlying mechanism remains unclear. In vivo preclinical models have reproducibly recapitulated Aβ-induced Tau-pathology. Tau pathology was thereby also induced by aggregated Aβ, in functionally connected brain areas, reminiscent of a prion-like seeding process. In this work we demonstrate, that pre-aggregated Aβ can directly induce Tau fibrillization by cross-seeding, in a cell-free assay, comparable to that demonstrated before for alpha-synuclein and Tau. We furthermore demonstrate, in a well-characterized cellular Tau-aggregation assay that Aβ-seeds cross-seeded Tau-pathology and strongly catalyzed pre-existing Tau-aggregation, reminiscent of the pathogenetic process in AD. Finally, we demonstrate that heterotypic seeded Tau by pre-aggregated Aβ provides efficient seeds for induction and propagation of Tau-pathology in vivo. Prion-like, heterotypic seeding of Tau fibrillization by Aβ, providing potent seeds for propagating Tau pathology in vivo, as demonstrated here, provides a compelling molecular mechanism for Aβ-induced propagation of Tau-pathology, beyond regions with pre-existing Tau-pathology (entorhinal cortex/locus coeruleus). Cross-seeding along functional connections could thereby resolve the initial spatial dissociation between amyloid- and Tau-pathology, and preferential propagation of Tau-pathology in regions with pre-existing 'silent' Tau-pathology, by conversion of a 'silent' Tau pathology to a 'spreading' Tau-pathology, observed in AD.
遗传、临床、组织病理学和生物标志物数据有力地支持了β-淀粉样蛋白(Aβ)诱导Tau病理在海马旁回皮质(EC)之外扩散,这是从临床前认知正常向阿尔茨海默病(AD)转变的关键过程,但其潜在机制仍不清楚。体内临床前模型已可重复地再现Aβ诱导的Tau病理。聚集的Aβ在功能连接的脑区也可诱导Tau病理,这让人联想到朊病毒样的种子传播过程。在这项研究中,我们证明,在无细胞试验中,预聚集的Aβ可通过交叉种子化直接诱导Tau纤维化,这与之前α-突触核蛋白和Tau的情况类似。此外,在一个特征明确的细胞Tau聚集试验中,我们证明Aβ种子交叉种子化Tau病理并强烈催化已有的Tau聚集,这让人联想到AD中的致病过程。最后,我们证明预聚集的Aβ产生的异型种子化Tau为体内Tau病理的诱导和传播提供了有效的种子。如本文所示,Aβ对Tau纤维化的朊病毒样异型种子化,为体内Tau病理的传播提供了有力的种子,这为Aβ诱导的Tau病理传播提供了一个令人信服的分子机制,该机制可超越已有Tau病理的区域(海马旁回皮质/蓝斑)。沿着功能连接的交叉种子化由此可以解决淀粉样蛋白和Tau病理之间最初的空间分离问题,并通过将“沉默”的Tau病理转化为“扩散”的Tau病理,优先在已有“沉默型”Tau病理的区域传播Tau病理,这在AD中也有观察到。