Hennessy Erin, Ornstein Joseph T, Economos Christina D, Herzog Julia Bloom, Lynskey Vanessa, Coffield Edward, Hammond Ross A
National Cancer Institute, National Institutes of Health, 9609 Medical Center Dr, Bethesda, MD 20852. Email:
Department of Political Science, University of Michigan, Ann Arbor, Michigan.
Prev Chronic Dis. 2016 Jan 7;13:E04. doi: 10.5888/pcd13.150414.
Complex systems modeling can provide useful insights when designing and anticipating the impact of public health interventions. We developed an agent-based, or individual-based, computation model (ABM) to aid in evaluating and refining implementation of behavior change interventions designed to increase physical activity and healthy eating and reduce unnecessary weight gain among school-aged children. The potential benefits of applying an ABM approach include estimating outcomes despite data gaps, anticipating impact among different populations or scenarios, and exploring how to expand or modify an intervention. The practical challenges inherent in implementing such an approach include data resources, data availability, and the skills and knowledge of ABM among the public health obesity intervention community. The aim of this article was to provide a step-by-step guide on how to develop an ABM to evaluate multifaceted interventions on childhood obesity prevention in multiple settings. We used data from 2 obesity prevention initiatives and public-use resources. The details and goals of the interventions, overview of the model design process, and generalizability of this approach for future interventions is discussed.
在设计和预测公共卫生干预措施的影响时,复杂系统建模可以提供有用的见解。我们开发了一种基于主体或基于个体的计算模型(ABM),以帮助评估和完善旨在增加学龄儿童身体活动和健康饮食并减少不必要体重增加的行为改变干预措施的实施。应用ABM方法的潜在好处包括尽管存在数据缺口仍能估计结果、预测不同人群或场景中的影响,以及探索如何扩展或修改干预措施。实施这种方法所固有的实际挑战包括数据资源、数据可用性以及公共卫生肥胖干预社区中ABM的技能和知识。本文的目的是提供一份关于如何开发ABM以评估在多种环境中预防儿童肥胖的多方面干预措施的分步指南。我们使用了来自2项肥胖预防倡议和公共资源的数据。讨论了干预措施的细节和目标、模型设计过程概述以及这种方法对未来干预措施的可推广性。