Suppr超能文献

基于肽-聚电解质共轭物的多功能生物传感器。

Multifunctional biosensors based on peptide-polyelectrolyte conjugates.

作者信息

Kogikoski S, Sousa C P, Liberato M S, Andrade-Filho T, Prieto T, Ferreira F F, Rocha A R, Guha S, Alves W A

机构信息

Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-580, Santo André, SP, Brazil.

Instituto de Ciências Exatas, Faculdade de Física, Universidade Federal do Sul e Sudeste do Pará, Campus Marabá, 68505-080, Marabá, Pará, Brazil.

出版信息

Phys Chem Chem Phys. 2016 Jan 28;18(4):3223-33. doi: 10.1039/c5cp07165h.

Abstract

A novel enzymatic platform for the sensing of H2O2 and glucose that uses L,L-diphenylalanine micro/nanostructures (FF-MNSs) as an enzyme support is shown. This platform is obtained by the self-assembly of poly(allylamine hydrochloride) (PAH), FF-MNSs, and microperoxidase-11 (MP11) anchored onto the peptide matrix, in two different crystal structures of FF-MNSs: hexagonal (P61) and orthorhombic (P22121). The electroactive area of the electrodes increases in the presence of FF-MNSs. We also demonstrate via theoretical calculations that the valence band energy of the orthorhombic structure allows it to be doped, similarly to p-type semiconductors, where PAH acts as a doping agent for the orthorhombic peptide structure, decreasing the band-gap by around 1 eV, which results in a smaller charge transfer resistance. These results are consistent with electrochemical impedance spectroscopy measurements, which further elucidate the role of the band structure of the orthorhombic FF-MNSs in the conductivity and electron transfer rates of the hybrid material. An effective communication between the electrode and the active site of a glucose oxidase enzyme through MP11-protein complexes occurs, paving the way for FF-MNSs in the orthorhombic phase for the future development of bioelectronics sensing devices.

摘要

展示了一种新型的酶促平台,该平台利用L,L-二苯基丙氨酸微/纳米结构(FF-MNSs)作为酶载体来检测过氧化氢和葡萄糖。这个平台是通过将聚(烯丙胺盐酸盐)(PAH)、FF-MNSs和固定在肽基质上的微过氧化物酶-11(MP11)自组装而成,FF-MNSs有两种不同的晶体结构:六方晶系(P61)和正交晶系(P22121)。在存在FF-MNSs的情况下,电极的电活性面积会增加。我们还通过理论计算证明,正交晶系结构的价带能量使其能够像p型半导体一样被掺杂,其中PAH作为正交晶系肽结构的掺杂剂,使带隙减小约1 eV,这导致电荷转移电阻更小。这些结果与电化学阻抗谱测量结果一致,进一步阐明了正交晶系FF-MNSs的能带结构在杂化材料的导电性和电子转移速率中的作用。通过MP11-蛋白质复合物在电极和葡萄糖氧化酶的活性位点之间实现了有效的通信,为正交相的FF-MNSs在生物电子传感设备的未来发展铺平了道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验