Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil; Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil.
Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Núcleo de Pesquisa em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil.
J Pharm Biomed Anal. 2021 Nov 30;206:114392. doi: 10.1016/j.jpba.2021.114392. Epub 2021 Sep 24.
The projection of new biosensing technologies for genetic identification of SARS-COV-2 is essential in the face of a pandemic scenario. For this reason, the current research aims to develop a label-free flexible biodevice applicable to COVID-19. A nanostructured platform made of polypyrrole (PPy) and gold nanoparticles (GNP) was designed for interfacing the electrochemical signal in miniaturized electrodes of tin-doped indium oxide (ITO). Oligonucleotide primer was chemically immobilized on the flexible transducers for the biorecognition of the nucleocapsid protein (N) gene. Methodological protocols based on cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and atomic force microscopy (AFM) were used to characterize the nanotechnological apparatus. The biosensor's electrochemical performance was evaluated using the SARS-CoV-2 genome and biological samples of cDNA from patients infected with retrovirus at various disease stages. It is inferred that the analytical tool was able to distinguish the expression of SARS-CoV-2 in patients diagnosed with COVID-19 in the early, intermediate and late stages. The biosensor exhibited high selectivity by not recognizing the biological target in samples from patients not infected with SARS-CoV-2. The proposed sensor obtained a linear response range estimated from 800 to 4000 copies µL with a regression coefficient of 0.99, and a detection limit of 258.01 copies µL. Therefore, the electrochemical biosensor based on flexible electrode technology represents a promising trend for sensitive molecular analysis of etiologic agent with fast and simple operationalization. In addition to early genetic diagnosis, the biomolecular assay may help to monitor the progression of COVID-19 infection in a novel manner.
新型生物传感技术用于 SARS-CoV-2 的基因识别在大流行情况下至关重要。出于这个原因,目前的研究旨在开发适用于 COVID-19 的无标记柔性生物器件。设计了一种由聚吡咯(PPy)和金纳米粒子(GNP)组成的纳米结构平台,用于接口小型化氧化铟锡(ITO)电极中的电化学信号。寡核苷酸引物通过化学固定在柔性换能器上,用于核衣壳蛋白(N)基因的生物识别。基于循环伏安法(CV)、电化学阻抗谱(EIS)和原子力显微镜(AFM)的方法学协议用于表征纳米技术仪器。使用 SARS-CoV-2 基因组和感染逆转录病毒的患者 cDNA 的生物样本评估了生物传感器的电化学性能。推断该分析工具能够区分在 COVID-19 早期、中期和晚期诊断为 COVID-19 的患者中 SARS-CoV-2 的表达。生物传感器通过不识别未感染 SARS-CoV-2 的患者样本中的生物靶标表现出高选择性。所提出的传感器在 800 到 4000 拷贝 µL 的线性响应范围内获得了估计的线性响应范围,回归系数为 0.99,检测限为 258.01 拷贝 µL。因此,基于柔性电极技术的电化学生物传感器代表了一种有前途的趋势,用于对病原体进行灵敏的分子分析,具有快速和简单的操作。除了早期基因诊断外,生物分子测定法还可以帮助以新的方式监测 COVID-19 感染的进展。