Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstr. 3, 91058 Erlangen, Germany.
Chem Soc Rev. 2016 Feb 7;45(3):612-30. doi: 10.1039/c5cs00774g.
In this review article, we highlight recent advances in the field of solar energy conversion at a molecular level. We focus mainly on investigations regarding fullerenes as well as endohedral metallofullerenes in energy and/or electron donor-acceptor conjugates, hybrids, and arrays, but will also discuss several more advanced systems. Hereby, the mimicry of the fundamental processes occurring in natural photosynthesis, namely light harvesting (LH), energy transfer (EnT), reductive/oxidative electron transfer (ET), and catalysis (CAT), which serve as a blue print for the rational design of artificial photosynthetic systems, stand at the focalpoint. Importantly, the key processes in photosynthesis, that is, LH, EnT, ET, and CAT, define the structure of this review with the only further differentiation in terms of covalent and non-covalent systems. Fullerenes as well as endohedral metallofullerenes are chosen by virtue of their small reorganization energies in electron transfer processes, on the one hand, and their exceptional redox behaviour, on the other hand.
在这篇综述文章中,我们重点介绍了分子水平上太阳能转换领域的最新进展。我们主要关注富勒烯以及内包金属富勒烯在能量和/或电子给体-受体共轭物、杂化物和阵列中的应用,但也将讨论几个更先进的系统。在此,模拟自然界光合作用中发生的基本过程,即光捕获(LH)、能量转移(EnT)、还原/氧化电子转移(ET)和催化(CAT),为人工光合作用系统的合理设计提供了蓝图。重要的是,光合作用中的关键过程,即 LH、EnT、ET 和 CAT,定义了本综述的结构,唯一的进一步区别是共价和非共价系统。富勒烯和内包金属富勒烯之所以被选中,一方面是因为它们在电子转移过程中具有较小的重组能,另一方面是因为它们具有特殊的氧化还原行为。