Suppr超能文献

量化神经振荡同步:谱相干与锁相值方法的比较

Quantifying Neural Oscillatory Synchronization: A Comparison between Spectral Coherence and Phase-Locking Value Approaches.

作者信息

Lowet Eric, Roberts Mark J, Bonizzi Pietro, Karel Joël, De Weerd Peter

机构信息

Department of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands.

Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands.

出版信息

PLoS One. 2016 Jan 8;11(1):e0146443. doi: 10.1371/journal.pone.0146443. eCollection 2016.

Abstract

Synchronization or phase-locking between oscillating neuronal groups is considered to be important for coordination of information among cortical networks. Spectral coherence is a commonly used approach to quantify phase locking between neural signals. We systematically explored the validity of spectral coherence measures for quantifying synchronization among neural oscillators. To that aim, we simulated coupled oscillatory signals that exhibited synchronization dynamics using an abstract phase-oscillator model as well as interacting gamma-generating spiking neural networks. We found that, within a large parameter range, the spectral coherence measure deviated substantially from the expected phase-locking. Moreover, spectral coherence did not converge to the expected value with increasing signal-to-noise ratio. We found that spectral coherence particularly failed when oscillators were in the partially (intermittent) synchronized state, which we expect to be the most likely state for neural synchronization. The failure was due to the fast frequency and amplitude changes induced by synchronization forces. We then investigated whether spectral coherence reflected the information flow among networks measured by transfer entropy (TE) of spike trains. We found that spectral coherence failed to robustly reflect changes in synchrony-mediated information flow between neural networks in many instances. As an alternative approach we explored a phase-locking value (PLV) method based on the reconstruction of the instantaneous phase. As one approach for reconstructing instantaneous phase, we used the Hilbert Transform (HT) preceded by Singular Spectrum Decomposition (SSD) of the signal. PLV estimates have broad applicability as they do not rely on stationarity, and, unlike spectral coherence, they enable more accurate estimations of oscillatory synchronization across a wide range of different synchronization regimes, and better tracking of synchronization-mediated information flow among networks.

摘要

振荡神经元群之间的同步或锁相被认为对于皮层网络间信息的协调很重要。频谱相干是一种常用的量化神经信号之间锁相的方法。我们系统地探讨了频谱相干测量在量化神经振荡器之间同步方面的有效性。为此,我们使用抽象相位振荡器模型以及相互作用的产生伽马波的脉冲神经网络模拟了表现出同步动力学的耦合振荡信号。我们发现,在很大的参数范围内,频谱相干测量值与预期的锁相情况有很大偏差。此外,随着信噪比的增加,频谱相干并未收敛到预期值。我们发现,当振荡器处于部分(间歇性)同步状态时,频谱相干尤其失效,而我们认为这种状态是神经同步最可能出现的状态。这种失效是由同步力引起的快速频率和幅度变化导致的。然后,我们研究了频谱相干是否反映了通过脉冲序列的转移熵(TE)测量的网络间信息流。我们发现,在许多情况下,频谱相干无法可靠地反映神经网络之间同步介导的信息流变化。作为一种替代方法,我们探索了一种基于瞬时相位重构的锁相值(PLV)方法。作为重构瞬时相位的一种方法,我们使用了在信号奇异谱分解(SSD)之后的希尔伯特变换(HT)。PLV估计具有广泛的适用性,因为它们不依赖于平稳性,而且与频谱相干不同,它们能够在广泛的不同同步状态范围内更准确地估计振荡同步,并更好地跟踪网络间同步介导的信息流。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6c6/4706353/09f976fe8054/pone.0146443.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验