Suppr超能文献

振荡神经回路:相位、振幅与复正态分布。

Oscillating neural circuits: Phase, amplitude, and the complex normal distribution.

作者信息

Urban Konrad N, Bong Heejong, Orellana Josue, Kass Robert E

机构信息

Statistics, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.

出版信息

Can J Stat. 2023 Sep;51(3):824-851. doi: 10.1002/cjs.11790. Epub 2023 Jul 22.

Abstract

Multiple oscillating time series are typically analyzed in the frequency domain, where coherence is usually said to represent the magnitude of the correlation between two signals at a particular frequency. The correlation being referenced is complex-valued and is similar to the real-valued Pearson correlation in some ways but not others. We discuss the dependence among oscillating series in the context of the multivariate complex normal distribution, which plays a role for vectors of complex random variables analogous to the usual multivariate normal distribution for vectors of real-valued random variables. We emphasize special cases that are valuable for the neural data we are interested in and provide new variations on existing results. We then introduce a complex latent variable model for narrowly band-pass-filtered signals at some frequency, and show that the resulting maximum likelihood estimate produces a latent coherence that is equivalent to the magnitude of the complex canonical correlation at the given frequency. We also derive an equivalence between partial coherence and the magnitude of complex partial correlation, at a given frequency. Our theoretical framework leads to interpretable results for an interesting multivariate dataset from the Allen Institute for Brain Science.

摘要

多个振荡时间序列通常在频域中进行分析,在频域中,相干性通常被认为代表两个信号在特定频率下的相关程度。这里所涉及的相关性是复数值的,在某些方面与实数值的皮尔逊相关性相似,但在其他方面则不同。我们在多元复正态分布的背景下讨论振荡序列之间的依赖性,多元复正态分布对于复随机变量向量所起的作用类似于通常的多元正态分布对于实值随机变量向量所起的作用。我们强调对我们感兴趣的神经数据有价值的特殊情况,并给出现有结果的新变体。然后,我们为某个频率下的窄带通滤波信号引入一个复潜变量模型,并表明由此得到的最大似然估计产生的潜相干性等同于给定频率下复典型相关性的大小。我们还在给定频率下推导出偏相干性与复偏相关性大小之间的等价关系。我们的理论框架为艾伦脑科学研究所的一个有趣的多变量数据集带来了可解释的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e137/11223177/b03d9e9ba58e/nihms-1995735-f0001.jpg

相似文献

1
Oscillating neural circuits: Phase, amplitude, and the complex normal distribution.
Can J Stat. 2023 Sep;51(3):824-851. doi: 10.1002/cjs.11790. Epub 2023 Jul 22.
4
Human Frequency Following Responses to Filtered Speech.
Ear Hear. 2021 Jan/Feb;42(1):87-105. doi: 10.1097/AUD.0000000000000902.
5
Complex-valued time-series correlation increases sensitivity in FMRI analysis.
Magn Reson Imaging. 2016 Jul;34(6):765-770. doi: 10.1016/j.mri.2016.03.011. Epub 2016 Mar 14.
6
Bayesian analysis of phase data in EEG and MEG.
Elife. 2023 Sep 12;12:e84602. doi: 10.7554/eLife.84602.
7
Generalization characteristics of complex-valued feedforward neural networks in relation to signal coherence.
IEEE Trans Neural Netw Learn Syst. 2012 Apr;23(4):541-51. doi: 10.1109/TNNLS.2012.2183613.
8
A cartesian time--frequency approach to reveal brain interaction dynamics.
Brain Topogr. 2007 Spring;19(3):147-54. doi: 10.1007/s10548-007-0021-6. Epub 2007 Jun 21.
9
Measuring frequency domain granger causality for multiple blocks of interacting time series.
Biol Cybern. 2013 Apr;107(2):217-32. doi: 10.1007/s00422-013-0547-5. Epub 2013 Jan 29.
10
Classifying epileptic phase-amplitude coupling in SEEG using complex-valued convolutional neural network.
Front Physiol. 2023 Jan 5;13:1085530. doi: 10.3389/fphys.2022.1085530. eCollection 2022.

引用本文的文献

1
Identification of interacting neural populations: methods and statistical considerations.
J Neurophysiol. 2023 Sep 1;130(3):475-496. doi: 10.1152/jn.00131.2023. Epub 2023 Jul 19.

本文引用的文献

1
TORUS GRAPHS FOR MULTIVARIATE PHASE COUPLING ANALYSIS.
Ann Appl Stat. 2020 Jun;14(2):635-660. doi: 10.1214/19-aoas1300. Epub 2020 Jun 29.
2
Latent Dynamic Factor Analysis of High-Dimensional Neural Recordings.
Adv Neural Inf Process Syst. 2020 Dec;33:16446-16456.
3
Survey of spiking in the mouse visual system reveals functional hierarchy.
Nature. 2021 Apr;592(7852):86-92. doi: 10.1038/s41586-020-03171-x. Epub 2021 Jan 20.
5
Beta Oscillations in Working Memory, Executive Control of Movement and Thought, and Sensorimotor Function.
J Neurosci. 2019 Oct 16;39(42):8231-8238. doi: 10.1523/JNEUROSCI.1163-19.2019.
6
Computational Neuroscience: Mathematical and Statistical Perspectives.
Annu Rev Stat Appl. 2018 Mar;5:183-214. doi: 10.1146/annurev-statistics-041715-033733. Epub 2017 Dec 8.
7
Working Memory 2.0.
Neuron. 2018 Oct 24;100(2):463-475. doi: 10.1016/j.neuron.2018.09.023.
8
Investigating large-scale brain dynamics using field potential recordings: analysis and interpretation.
Nat Neurosci. 2018 Jul;21(7):903-919. doi: 10.1038/s41593-018-0171-8. Epub 2018 Jun 25.
9
The relationship between coherence and the phase-locking value.
J Theor Biol. 2017 Dec 21;435:106-109. doi: 10.1016/j.jtbi.2017.08.029. Epub 2017 Sep 14.
10
Quantifying Neural Oscillatory Synchronization: A Comparison between Spectral Coherence and Phase-Locking Value Approaches.
PLoS One. 2016 Jan 8;11(1):e0146443. doi: 10.1371/journal.pone.0146443. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验