Urban Konrad N, Bong Heejong, Orellana Josue, Kass Robert E
Statistics, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.
Can J Stat. 2023 Sep;51(3):824-851. doi: 10.1002/cjs.11790. Epub 2023 Jul 22.
Multiple oscillating time series are typically analyzed in the frequency domain, where coherence is usually said to represent the magnitude of the correlation between two signals at a particular frequency. The correlation being referenced is complex-valued and is similar to the real-valued Pearson correlation in some ways but not others. We discuss the dependence among oscillating series in the context of the multivariate complex normal distribution, which plays a role for vectors of complex random variables analogous to the usual multivariate normal distribution for vectors of real-valued random variables. We emphasize special cases that are valuable for the neural data we are interested in and provide new variations on existing results. We then introduce a complex latent variable model for narrowly band-pass-filtered signals at some frequency, and show that the resulting maximum likelihood estimate produces a latent coherence that is equivalent to the magnitude of the complex canonical correlation at the given frequency. We also derive an equivalence between partial coherence and the magnitude of complex partial correlation, at a given frequency. Our theoretical framework leads to interpretable results for an interesting multivariate dataset from the Allen Institute for Brain Science.
多个振荡时间序列通常在频域中进行分析,在频域中,相干性通常被认为代表两个信号在特定频率下的相关程度。这里所涉及的相关性是复数值的,在某些方面与实数值的皮尔逊相关性相似,但在其他方面则不同。我们在多元复正态分布的背景下讨论振荡序列之间的依赖性,多元复正态分布对于复随机变量向量所起的作用类似于通常的多元正态分布对于实值随机变量向量所起的作用。我们强调对我们感兴趣的神经数据有价值的特殊情况,并给出现有结果的新变体。然后,我们为某个频率下的窄带通滤波信号引入一个复潜变量模型,并表明由此得到的最大似然估计产生的潜相干性等同于给定频率下复典型相关性的大小。我们还在给定频率下推导出偏相干性与复偏相关性大小之间的等价关系。我们的理论框架为艾伦脑科学研究所的一个有趣的多变量数据集带来了可解释的结果。