Suppr超能文献

小白菊内酯通过共价修饰微管蛋白来破坏微管。

Parthenolide Destabilizes Microtubules by Covalently Modifying Tubulin.

机构信息

Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.

Department of Pathology, University of Michigan, Ann Arbor, MI, USA.

出版信息

Curr Biol. 2021 Feb 22;31(4):900-907.e6. doi: 10.1016/j.cub.2020.11.055. Epub 2021 Jan 21.

Abstract

Detyrosination of the α-tubulin C-terminal tail is a post-translational modification (PTM) of microtubules that is key for many biological processes. Although detyrosination is the oldest known microtubule PTM, the carboxypeptidase responsible for this modification, VASH1/2-SVBP, was identified only 3 years ago, precluding genetic approaches to prevent detyrosination. Studies examining the cellular functions of detyrosination have therefore relied on a natural product, parthenolide, which is widely believed to block detyrosination of α-tubulin in cells, presumably by inhibiting the activity of the relevant carboxypeptidase(s). Parthenolide is a sesquiterpene lactone that forms covalent linkages predominantly with exposed thiol groups; e.g., on cysteine residues. Using mass spectrometry, we show that parthenolide forms adducts on both cysteine and histidine residues on tubulin itself, in vitro and in cells. Parthenolide causes tubulin protein aggregation and prevents the formation of microtubules. In contrast to epoY, an epoxide inhibitor of VASH1/2-SVBP, parthenolide does not block VASH1-SVBP activity in vitro. Lastly, we show that epoY is an efficacious inhibitor of microtubule detyrosination in cells, providing an alternative chemical means to block detyrosination. Collectively, our work supports the notion that parthenolide is a promiscuous inhibitor of many cellular processes and suggests that its ability to block detyrosination may be an indirect consequence of reducing the polymerization-competent pool of tubulin in cells.

摘要

α-微管蛋白 C 末端尾的去酪氨酸化是一种翻译后修饰 (PTM),对许多生物过程至关重要。尽管去酪氨酸化是已知最古老的微管 PTM,但负责该修饰的羧肽酶 VASH1/2-SVBP 仅在 3 年前被鉴定出来,这排除了用遗传方法来防止去酪氨酸化。因此,研究细胞中去酪氨酸化的功能依赖于一种天然产物,即小白菊内酯,它被广泛认为通过抑制相关羧肽酶的活性来阻止细胞中α-微管蛋白的去酪氨酸化。小白菊内酯是一种倍半萜内酯,主要与暴露的巯基形成共价键,例如半胱氨酸残基。通过质谱分析,我们表明小白菊内酯在体外和细胞内均可与微管蛋白自身的半胱氨酸和组氨酸残基形成加合物。小白菊内酯导致微管蛋白蛋白聚集并阻止微管的形成。与 VASH1/2-SVBP 的环氧化物抑制剂 epoY 不同,小白菊内酯在体外不抑制 VASH1-SVBP 活性。最后,我们表明 epoY 是细胞中微管去酪氨酸化的有效抑制剂,为阻断去酪氨酸化提供了另一种化学手段。总的来说,我们的工作支持了小白菊内酯是许多细胞过程的广谱抑制剂的观点,并表明其阻断去酪氨酸化的能力可能是由于减少细胞中聚合能力强的微管蛋白池的间接结果。

相似文献

1
Parthenolide Destabilizes Microtubules by Covalently Modifying Tubulin.
Curr Biol. 2021 Feb 22;31(4):900-907.e6. doi: 10.1016/j.cub.2020.11.055. Epub 2021 Jan 21.
2
Structural basis of tubulin detyrosination by vasohibins.
Nat Struct Mol Biol. 2019 Jul;26(7):583-591. doi: 10.1038/s41594-019-0242-x. Epub 2019 Jun 24.
3
Microtubule detyrosination by VASH1/SVBP is regulated by the conformational state of tubulin in the lattice.
Curr Biol. 2023 Oct 9;33(19):4111-4123.e7. doi: 10.1016/j.cub.2023.07.062. Epub 2023 Sep 15.
4
VASH1-SVBP and VASH2-SVBP generate different detyrosination profiles on microtubules.
J Cell Biol. 2023 Feb 6;222(2). doi: 10.1083/jcb.202205096. Epub 2022 Dec 13.
5
Regulation of microtubule detyrosination by Ca2+ and conventional calpains.
J Cell Sci. 2022 May 1;135(9). doi: 10.1242/jcs.259108. Epub 2022 May 6.
6
Molecular basis of vasohibins-mediated detyrosination and its impact on spindle function and mitosis.
Cell Res. 2019 Jul;29(7):533-547. doi: 10.1038/s41422-019-0187-y. Epub 2019 Jun 6.
7
Cryo-EM structure of VASH1-SVBP bound to microtubules.
Elife. 2020 Aug 10;9:e58157. doi: 10.7554/eLife.58157.
9
Vasohibins/SVBP are tubulin carboxypeptidases (TCPs) that regulate neuron differentiation.
Science. 2017 Dec 15;358(6369):1448-1453. doi: 10.1126/science.aao4165. Epub 2017 Nov 16.
10
Vasohibin-1 has α-tubulin detyrosinating activity in glomerular podocytes.
Biochem Biophys Res Commun. 2022 Apr 9;599:93-99. doi: 10.1016/j.bbrc.2022.02.047. Epub 2022 Feb 12.

引用本文的文献

3
α-tubulin detyrosination fine-tunes kinetochore-microtubule attachments.
Nat Commun. 2024 Nov 9;15(1):9720. doi: 10.1038/s41467-024-54155-8.
7
Targeting Vasohibins to Promote Axon Regeneration.
J Neurosci. 2024 Apr 3;44(14):e2031232024. doi: 10.1523/JNEUROSCI.2031-23.2024.
9
Microtubule detyrosination by VASH1/SVBP is regulated by the conformational state of tubulin in the lattice.
Curr Biol. 2023 Oct 9;33(19):4111-4123.e7. doi: 10.1016/j.cub.2023.07.062. Epub 2023 Sep 15.
10
Deacetylation via SIRT2 prevents keratin-mutation-associated injury and keratin aggregation.
JCI Insight. 2023 Jul 24;8(14):e166314. doi: 10.1172/jci.insight.166314.

本文引用的文献

1
Identification of modified peptides using localization-aware open search.
Nat Commun. 2020 Aug 13;11(1):4065. doi: 10.1038/s41467-020-17921-y.
2
Philosopher: a versatile toolkit for shotgun proteomics data analysis.
Nat Methods. 2020 Sep;17(9):869-870. doi: 10.1038/s41592-020-0912-y.
3
Parthenolide inhibits ubiquitin-specific peptidase 7 (USP7), Wnt signaling, and colorectal cancer cell growth.
J Biol Chem. 2020 Mar 13;295(11):3576-3589. doi: 10.1074/jbc.RA119.011396. Epub 2020 Feb 6.
4
Advances in chemistry and bioactivity of parthenolide.
Nat Prod Rep. 2020 Apr 1;37(4):541-565. doi: 10.1039/c9np00049f. Epub 2019 Nov 25.
5
Structural basis of tubulin detyrosination by vasohibins.
Nat Struct Mol Biol. 2019 Jul;26(7):583-591. doi: 10.1038/s41594-019-0242-x. Epub 2019 Jun 24.
6
Parthenolide Covalently Targets and Inhibits Focal Adhesion Kinase in Breast Cancer Cells.
Cell Chem Biol. 2019 Jul 18;26(7):1027-1035.e22. doi: 10.1016/j.chembiol.2019.03.016. Epub 2019 May 9.
7
Polyglutamylation of tubulin's C-terminal tail controls pausing and motility of kinesin-3 family member KIF1A.
J Biol Chem. 2019 Apr 19;294(16):6353-6363. doi: 10.1074/jbc.RA118.005765. Epub 2019 Feb 15.
8
Detyrosinated microtubules spatially constrain lysosomes facilitating lysosome-autophagosome fusion.
J Cell Biol. 2019 Feb 4;218(2):632-643. doi: 10.1083/jcb.201807124. Epub 2018 Dec 19.
9
The Tubulin Detyrosination Cycle: Function and Enzymes.
Trends Cell Biol. 2019 Jan;29(1):80-92. doi: 10.1016/j.tcb.2018.08.003. Epub 2018 Sep 10.
10
PDV: an integrative proteomics data viewer.
Bioinformatics. 2019 Apr 1;35(7):1249-1251. doi: 10.1093/bioinformatics/bty770.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验