Suppr超能文献

蛋白质结晶的当前趋势。

Current trends in protein crystallization.

作者信息

Gavira José A

机构信息

Laboratorio de Estudios Cristalográficos, IACT (CSIC-UGR), Avda. de las Palmeras, 4. 18100 Armilla, Granada, Spain.

出版信息

Arch Biochem Biophys. 2016 Jul 15;602:3-11. doi: 10.1016/j.abb.2015.12.010. Epub 2015 Dec 31.

Abstract

UNLABELLED

Proteins belong to the most complex colloidal system in terms of their physicochemical properties, size and conformational-flexibility. This complexity contributes to their great sensitivity to any external change and dictate the uncertainty of crystallization. The need of 3D models to understand their functionality and interaction mechanisms with other neighbouring (macro)molecules has driven the tremendous effort put into the field of crystallography that has also permeated other fields trying to shed some light into reluctant-to-crystallize proteins. This review is aimed at revising protein crystallization from a regular-laboratory point of view. It is also devoted to highlight the latest developments and achievements to produce, identify and deliver high-quality protein crystals for XFEL, Micro-ED or neutron diffraction. The low likelihood of protein crystallization is rationalized by considering the intrinsic polypeptide nature (folded state, surface charge, etc) followed by a description of the standard crystallization methods (batch, vapour diffusion and counter-diffusion), including high throughput advances. Other methodologies aimed at determining protein features in solution (NMR, SAS, DLS) or to gather structural information from single particles such as Cryo-EM are also discussed. Finally, current approaches showing the convergence of different structural biology techniques and the cross-methodologies adaptation to tackle the most difficult problems, are presented.

SYNOPSIS

Current advances in biomacromolecules crystallization, from nano crystals for XFEL and Micro-ED to large crystals for neutron diffraction, are covered with special emphasis in methodologies applicable at laboratory scale.

摘要

未标注

就其物理化学性质、大小和构象灵活性而言,蛋白质属于最复杂的胶体系统。这种复杂性导致它们对任何外部变化都极为敏感,并决定了结晶的不确定性。为了理解蛋白质的功能以及它们与其他相邻(宏观)分子的相互作用机制,对三维模型的需求推动了在晶体学领域投入的巨大努力,这一领域的成果也渗透到了其他试图揭示难结晶蛋白质奥秘的领域。本综述旨在从常规实验室的角度审视蛋白质结晶。它还致力于突出在为X射线自由电子激光(XFEL)、微聚焦电子衍射(Micro-ED)或中子衍射制备、识别和提供高质量蛋白质晶体方面的最新进展和成就。通过考虑蛋白质固有的多肽性质(折叠状态、表面电荷等)来解释蛋白质结晶可能性低的原因,随后描述标准的结晶方法(批量法、气相扩散法和逆流扩散法),包括高通量技术的进展。还讨论了其他旨在确定溶液中蛋白质特征的方法(核磁共振、小角散射、动态光散射),以及从单个颗粒获取结构信息的方法,如冷冻电子显微镜。最后,介绍了当前不同结构生物学技术融合以及跨方法适应以解决最棘手问题的方法。

综述

涵盖了生物大分子结晶的当前进展,从用于XFEL和Micro-ED的纳米晶体到用于中子衍射的大晶体,特别强调了适用于实验室规模的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验