Suppr超能文献

血管在脑电图高分辨率容积导体头部建模中的作用。

The role of blood vessels in high-resolution volume conductor head modeling of EEG.

作者信息

Fiederer L D J, Vorwerk J, Lucka F, Dannhauer M, Yang S, Dümpelmann M, Schulze-Bonhage A, Aertsen A, Speck O, Wolters C H, Ball T

机构信息

Intracranial EEG and Brain Imaging Lab, Epilepsy Center, University Hospital Freiburg, Germany; Neurobiology and Biophysics, Faculty of Biology, University of Freiburg, Germany; BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Germany; Bernstein Center Freiburg, University of Freiburg, Germany.

Institute for Biomagnetism and Biosignalanalysis, University of Münster, Germany.

出版信息

Neuroimage. 2016 Mar;128:193-208. doi: 10.1016/j.neuroimage.2015.12.041. Epub 2015 Dec 31.

Abstract

Reconstruction of the electrical sources of human EEG activity at high spatio-temporal accuracy is an important aim in neuroscience and neurological diagnostics. Over the last decades, numerous studies have demonstrated that realistic modeling of head anatomy improves the accuracy of source reconstruction of EEG signals. For example, including a cerebro-spinal fluid compartment and the anisotropy of white matter electrical conductivity were both shown to significantly reduce modeling errors. Here, we for the first time quantify the role of detailed reconstructions of the cerebral blood vessels in volume conductor head modeling for EEG. To study the role of the highly arborized cerebral blood vessels, we created a submillimeter head model based on ultra-high-field-strength (7T) structural MRI datasets. Blood vessels (arteries and emissary/intraosseous veins) were segmented using Frangi multi-scale vesselness filtering. The final head model consisted of a geometry-adapted cubic mesh with over 17×10(6) nodes. We solved the forward model using a finite-element-method (FEM) transfer matrix approach, which allowed reducing computation times substantially and quantified the importance of the blood vessel compartment by computing forward and inverse errors resulting from ignoring the blood vessels. Our results show that ignoring emissary veins piercing the skull leads to focal localization errors of approx. 5 to 15mm. Large errors (>2cm) were observed due to the carotid arteries and the dense arterial vasculature in areas such as in the insula or in the medial temporal lobe. Thus, in such predisposed areas, errors caused by neglecting blood vessels can reach similar magnitudes as those previously reported for neglecting white matter anisotropy, the CSF or the dura - structures which are generally considered important components of realistic EEG head models. Our findings thus imply that including a realistic blood vessel compartment in EEG head models will be helpful to improve the accuracy of EEG source analyses particularly when high accuracies in brain areas with dense vasculature are required.

摘要

以高时空精度重建人类脑电图(EEG)活动的电信号源是神经科学和神经诊断学中的一个重要目标。在过去几十年中,大量研究表明,对头解剖结构进行逼真建模可提高EEG信号源重建的准确性。例如,纳入脑脊液腔室以及白质电导率的各向异性均被证明可显著减少建模误差。在此,我们首次量化了大脑血管的详细重建在用于EEG的容积导体头部建模中的作用。为了研究高度分支的大脑血管的作用,我们基于超高场强(7T)结构MRI数据集创建了一个亚毫米级头部模型。使用Frangi多尺度血管造影滤波对血管(动脉和导静脉/骨内静脉)进行分割。最终的头部模型由一个适应几何形状的立方网格组成,节点数超过17×10⁶ 个。我们使用有限元法(FEM)传递矩阵方法求解正向模型,这使得计算时间大幅减少,并通过计算忽略血管所导致的正向和反向误差来量化血管腔室的重要性。我们的结果表明,忽略穿透颅骨的导静脉会导致约5至15毫米的局灶性定位误差。由于颈动脉以及诸如岛叶或颞叶内侧等区域的密集动脉血管系统,观察到了较大误差(>2厘米)。因此,在这些易受影响的区域,忽略血管所导致的误差可能达到与之前报道的忽略白质各向异性、脑脊液或硬脑膜(这些结构通常被认为是逼真的EEG头部模型的重要组成部分)所导致的误差相似的量级。因此,我们的研究结果意味着在EEG头部模型中纳入逼真的血管腔室将有助于提高EEG源分析的准确性,特别是在需要对血管密集的脑区进行高精度分析时。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d01/5225375/fa9c9bbb36d3/nihms783992f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验