Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China.
Plant J. 2016 Feb;85(4):478-93. doi: 10.1111/tpj.13120. Epub 2016 Feb 8.
Brassinosteroids (BRs) play essential roles in modulating plant growth, development and stress responses. Here, involvement of BRs in plant systemic resistance to virus was studied. Treatment of local leaves in Nicotiana benthamiana with BRs induced virus resistance in upper untreated leaves, accompanied by accumulations of H2O2 and NO. Scavenging of H2O2 or NO in upper leaves blocked BR-induced systemic virus resistance. BR-induced systemic H2O2 accumulation was blocked by local pharmacological inhibition of NADPH oxidase or silencing of respiratory burst oxidase homolog gene NbRBOHB, but not by systemic NADPH oxidase inhibition or NbRBOHA silencing. Silencing of the nitrite-dependent nitrate reductase gene NbNR or systemic pharmacological inhibition of NR compromised BR-triggered systemic NO accumulation, while local inhibition of NR, silencing of NbNOA1 and inhibition of NOS had little effect. Moreover, we provide evidence that BR-activated H2O2 is required for NO synthesis. Pharmacological scavenging or genetic inhibiting of H2O2 generation blocked BR-induced systemic NO production, but BR-induced H2O2 production was not sensitive to NO scavengers or silencing of NbNR. Systemically applied sodium nitroprusside rescued BR-induced systemic virus defense in NbRBOHB-silenced plants, but H2O2 did not reverse the effect of NbNR silencing on BR-induced systemic virus resistance. Finally, we demonstrate that the receptor kinase BRI1(BR insensitive 1) is an upstream component in BR-mediated systemic defense signaling, as silencing of NbBRI1 compromised the BR-induced H2O2 and NO production associated with systemic virus resistance. Together, our pharmacological and genetic data suggest the existence of a signaling pathway leading to BR-mediated systemic virus resistance that involves local Respiratory Burst Oxidase Homolog B (RBOHB)-dependent H2O2 production and subsequent systemic NR-dependent NO generation.
油菜素内酯(BRs)在调节植物生长、发育和应激反应方面发挥着重要作用。本研究探讨了 BRs 在植物系统抗病毒中的作用。用 BRs 处理本氏烟的局部叶片可诱导未处理的上部叶片产生抗病毒反应,同时伴随着 H2O2 和 NO 的积累。在上部叶片中清除 H2O2 或 NO 可阻断 BR 诱导的系统抗病毒反应。局部药理学抑制 NADPH 氧化酶或沉默呼吸爆发氧化酶同源基因 NbRBOHB 可阻断 BR 诱导的系统 H2O2 积累,但系统抑制 NADPH 氧化酶或 NbRBOHA 沉默则不能。沉默亚硝酸还原酶基因 NbNR 或系统药理学抑制 NR 会损害 BR 触发的系统 NO 积累,而局部抑制 NR、沉默 NbNOA1 和抑制 NOS 则几乎没有影响。此外,我们提供了证据表明 BR 激活的 H2O2 是 NO 合成所必需的。药理学清除或遗传抑制 H2O2 的产生可阻断 BR 诱导的系统 NO 产生,但 BR 诱导的 H2O2 产生对 NO 清除剂或 NbNR 的沉默不敏感。系统施加硝普钠可挽救 NbRBOHB 沉默植物中 BR 诱导的系统病毒防御,但 H2O2 不能逆转 NbNR 沉默对 BR 诱导的系统病毒抗性的影响。最后,我们证明受体激酶 BRI1(BR 不敏感 1)是 BR 介导的系统防御信号中的上游成分,沉默 NbBRI1 会损害 BR 诱导的与系统病毒抗性相关的 H2O2 和 NO 产生。总之,我们的药理学和遗传学数据表明,存在一条信号通路导致 BR 介导的系统抗病毒反应,该通路涉及局部呼吸爆发氧化酶同源物 B(RBOHB)依赖性 H2O2 产生和随后的系统 NR 依赖性 NO 生成。