Park Hame, Lueckmann Jan-Matthis, von Kriegstein Katharina, Bitzer Sebastian, Kiebel Stefan J
Department of Psychology, Technische Universität Dresden, Dresden, Germany.
Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
Sci Rep. 2016 Jan 11;6:18832. doi: 10.1038/srep18832.
Decisions in everyday life are prone to error. Standard models typically assume that errors during perceptual decisions are due to noise. However, it is unclear how noise in the sensory input affects the decision. Here we show that there are experimental tasks for which one can analyse the exact spatio-temporal details of a dynamic sensory noise and better understand variability in human perceptual decisions. Using a new experimental visual tracking task and a novel Bayesian decision making model, we found that the spatio-temporal noise fluctuations in the input of single trials explain a significant part of the observed responses. Our results show that modelling the precise internal representations of human participants helps predict when perceptual decisions go wrong. Furthermore, by modelling precisely the stimuli at the single-trial level, we were able to identify the underlying mechanism of perceptual decision making in more detail than standard models.
日常生活中的决策容易出错。标准模型通常假设,感知决策过程中的错误是由噪声引起的。然而,尚不清楚感觉输入中的噪声是如何影响决策的。在此,我们表明,存在一些实验任务,通过它们可以分析动态感觉噪声的确切时空细节,并更好地理解人类感知决策中的变异性。使用一项新的实验性视觉跟踪任务和一种新颖的贝叶斯决策模型,我们发现单次试验输入中的时空噪声波动可以解释观察到的反应的很大一部分。我们的结果表明,对人类参与者精确的内部表征进行建模有助于预测感知决策何时出错。此外,通过在单次试验水平上精确地对刺激进行建模,我们能够比标准模型更详细地识别感知决策的潜在机制。