Radillo Adrian E, Veliz-Cuba Alan, Josić Krešimir, Kilpatrick Zachary P
Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104.
Department of Mathematics, University of Dayton, Dayton, OH 45469.
Neuron Behav Data Anal Theory. 2019;3(1). Epub 2019 Oct 9.
The aim of a number of psychophysics tasks is to uncover how mammals make decisions in a world that is in flux. Here we examine the characteristics of ideal and near-ideal observers in a task of this type. We ask when and how performance depends on task parameters and design, and, in turn, what observer performance tells us about their decision-making process. In the dynamic clicks task subjects hear two streams (left and right) of Poisson clicks with different rates. Subjects are rewarded when they correctly identify the side with the higher rate, as this side switches unpredictably. We show that a reduced set of task parameters defines regions in parameter space in which optimal, but not near-optimal observers, maintain constant response accuracy. We also show that for a range of task parameters an approximate normative model must be finely tuned to reach near-optimal performance, illustrating a potential way to distinguish between normative models and their approximations. In addition, we show that using the negative log-likelihood and the 0/1-loss functions to fit these types of models is not equivalent: the 0/1-loss leads to a bias in parameter recovery that increases with sensory noise. These findings suggest ways to tease apart models that are hard to distinguish when tuned exactly, and point to general pitfalls in experimental design, model fitting, and interpretation of the resulting data.
许多心理物理学任务的目的是揭示哺乳动物在不断变化的世界中是如何做出决策的。在这里,我们研究了在这类任务中理想和接近理想观察者的特征。我们探讨了表现何时以及如何依赖于任务参数和设计,以及观察者的表现又能告诉我们关于他们决策过程的哪些信息。在动态点击任务中,受试者会听到以不同速率发出的泊松点击的两个流(左和右)。当受试者正确识别出速率较高的一侧时会得到奖励,因为这一侧会不可预测地切换。我们表明,一组简化的任务参数定义了参数空间中的区域,在这些区域中,最优观察者而非接近最优观察者能保持恒定的反应准确率。我们还表明,对于一系列任务参数,一个近似的规范模型必须进行精细调整才能达到接近最优的表现,这说明了区分规范模型及其近似模型的一种潜在方法。此外,我们表明使用负对数似然和0/1损失函数来拟合这类模型并不等效:0/1损失会导致参数恢复中的偏差,且该偏差会随着感官噪声的增加而增大。这些发现提出了一些方法,可用于区分在精确调整时难以区分的模型,并指出了实验设计、模型拟合以及对所得数据解释中的常见陷阱。