Calder-Travis Joshua, Bogacz Rafal, Yeung Nick
Department of Experimental Psychology, University of Oxford, UK.
MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neuroscience, University of Oxford, UK.
J Math Psychol. 2023 Dec;117:102815. doi: 10.1016/j.jmp.2023.102815.
We introduce a new approach to modelling decision confidence, with the aim of enabling computationally cheap predictions while taking into account, and thereby exploiting, trial-by-trial variability in stochastically fluctuating stimuli. Using the framework of the drift diffusion model of decision making, along with time-dependent thresholds and the idea of a Bayesian confidence readout, we derive expressions for the probability distribution over confidence reports. In line with current models of confidence, the derivations allow for the accumulation of "pipeline" evidence that has been received but not processed by the time of response, the effect of drift rate variability, and metacognitive noise. The expressions are valid for stimuli that change over the course of a trial with normally-distributed fluctuations in the evidence they provide. A number of approximations are made to arrive at the final expressions, and we test all approximations via simulation. The derived expressions contain only a small number of standard functions, and require evaluating only once per trial, making trial-by-trial modelling of confidence data in stochastically fluctuating stimuli tasks more feasible. We conclude by using the expressions to gain insight into the confidence of optimal observers, and empirically observed patterns.
我们引入了一种新的决策信心建模方法,目的是在考虑并利用随机波动刺激中逐次试验的变异性的同时,实现计算成本低廉的预测。利用决策的漂移扩散模型框架,结合随时间变化的阈值和贝叶斯信心读出的概念,我们推导出了信心报告概率分布的表达式。与当前的信心模型一致,这些推导考虑了在做出反应时已接收但未处理的“管道”证据的积累、漂移率变异性的影响以及元认知噪声。这些表达式适用于在试验过程中随其提供的证据的正态分布波动而变化的刺激。为了得到最终表达式,我们进行了一些近似,并通过模拟测试了所有近似。推导得出的表达式只包含少量标准函数,并且每次试验只需评估一次,这使得在随机波动刺激任务中对信心数据进行逐次试验建模更加可行。我们通过使用这些表达式来深入了解最优观察者的信心以及实证观察到的模式来得出结论。