Monteiro J F G, Escudero D J, Weinreb C, Flanigan T, Galea S, Friedman S R, Marshall B D L
School of Public Health,Brown University,Providence,RI,USA.
Division of Infectious Diseases,The Miriam Hospital,Providence,RI,USA.
Epidemiol Infect. 2016 Jun;144(8):1683-700. doi: 10.1017/S0950268815003180. Epub 2016 Jan 12.
We investigated how different models of HIV transmission, and assumptions regarding the distribution of unprotected sex and syringe-sharing events ('risk acts'), affect quantitative understanding of HIV transmission process in people who inject drugs (PWID). The individual-based model simulated HIV transmission in a dynamic sexual and injecting network representing New York City. We constructed four HIV transmission models: model 1, constant probabilities; model 2, random number of sexual and parenteral acts; model 3, viral load individual assigned; and model 4, two groups of partnerships (low and high risk). Overall, models with less heterogeneity were more sensitive to changes in numbers risk acts, producing HIV incidence up to four times higher than that empirically observed. Although all models overestimated HIV incidence, micro-simulations with greater heterogeneity in the HIV transmission modelling process produced more robust results and better reproduced empirical epidemic dynamics.
我们研究了不同的艾滋病毒传播模型,以及关于无保护性行为和共用注射器事件(“风险行为”)分布的假设,如何影响对注射吸毒者(PWID)中艾滋病毒传播过程的定量理解。基于个体的模型在代表纽约市的动态性传播和注射网络中模拟了艾滋病毒传播。我们构建了四个艾滋病毒传播模型:模型1,恒定概率;模型2,性行为和非肠道行为数量随机;模型3,个体分配病毒载量;模型4,两组性伙伴关系(低风险和高风险)。总体而言,异质性较低的模型对风险行为数量变化更为敏感,产生的艾滋病毒发病率比实际观察到的高出四倍。尽管所有模型都高估了艾滋病毒发病率,但在艾滋病毒传播建模过程中具有更大异质性的微观模拟产生了更稳健的结果,并更好地再现了实际的流行动态。
Curr Opin HIV AIDS. 2011-3
Int J Drug Policy. 2015-4
Subst Use Misuse. 2011
BMC Infect Dis. 2024-12-18
Int J Drug Policy. 2021-2
Int J Public Health. 2015-5
Am J Epidemiol. 2015-1-15
Discrete Dyn Nat Soc. 2013-1-1
Am J Reprod Immunol. 2014-3-17
Int Public Health J. 2012
Health Aff (Millwood). 2014-3