Group for Neural Theory, Laboratoire de Neurosciences Cognitives, INSERM U960, École Normale Supérieure, Paris, France.
Nat Neurosci. 2014 Apr;17(4):594-600. doi: 10.1038/nn.3658. Epub 2014 Feb 23.
Asynchronous activity in balanced networks of excitatory and inhibitory neurons is believed to constitute the primary medium for the propagation and transformation of information in the neocortex. Here we show that an unstructured, sparsely connected network of model spiking neurons can display two fundamentally different types of asynchronous activity that imply vastly different computational properties. For weak synaptic couplings, the network at rest is in the well-studied asynchronous state, in which individual neurons fire irregularly at constant rates. In this state, an external input leads to a highly redundant response of different neurons that favors information transmission but hinders more complex computations. For strong couplings, we find that the network at rest displays rich internal dynamics, in which the firing rates of individual neurons fluctuate strongly in time and across neurons. In this regime, the internal dynamics interact with incoming stimuli to provide a substrate for complex information processing and learning.
在兴奋性和抑制性神经元的平衡网络中,异步活动被认为是新皮层中信息传播和转换的主要介质。在这里,我们表明,一个无结构、稀疏连接的模型尖峰神经元网络可以显示两种根本不同类型的异步活动,这意味着计算性质有很大的不同。对于较弱的突触耦合,在休息状态下的网络处于研究得很好的异步状态,其中单个神经元以恒定的速率不规则地发射。在这种状态下,外部输入导致不同神经元的高度冗余响应,有利于信息传输,但阻碍了更复杂的计算。对于较强的耦合,我们发现,在休息状态下的网络显示丰富的内部动力学,其中单个神经元的发射率在时间和神经元之间强烈波动。在这个范围内,内部动力学与传入的刺激相互作用,为复杂的信息处理和学习提供了一个基础。