Suppr超能文献

一类用于多变量纵向测量和二元事件的联合模型。

A class of joint models for multivariate longitudinal measurements and a binary event.

作者信息

Kim Sungduk, Albert Paul S

机构信息

Biostatistics and Bioinformatics Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Rockville, Maryland, U.S.A..

Biostatistics and Bioinformatics Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Rockville, Maryland, U.S.A.

出版信息

Biometrics. 2016 Sep;72(3):917-25. doi: 10.1111/biom.12463. Epub 2016 Jan 11.

Abstract

Predicting binary events such as newborns with large birthweight is important for obstetricians in their attempt to reduce both maternal and fetal morbidity and mortality. Such predictions have been a challenge in obstetric practice, where longitudinal ultrasound measurements taken at multiple gestational times during pregnancy may be useful for predicting various poor pregnancy outcomes. The focus of this article is on developing a flexible class of joint models for the multivariate longitudinal ultrasound measurements that can be used for predicting a binary event at birth. A skewed multivariate random effects model is proposed for the ultrasound measurements, and the skewed generalized t-link is assumed for the link function relating the binary event and the underlying longitudinal processes. We consider a shared random effect to link the two processes together. Markov chain Monte Carlo sampling is used to carry out Bayesian posterior computation. Several variations of the proposed model are considered and compared via the deviance information criterion, the logarithm of pseudomarginal likelihood, and with a training-test set prediction paradigm. The proposed methodology is illustrated with data from the NICHD Successive Small-for-Gestational-Age Births study, a large prospective fetal growth cohort conducted in Norway and Sweden.

摘要

预测诸如出生体重较大的新生儿这类二元事件,对于产科医生降低孕产妇和胎儿的发病率及死亡率的努力而言至关重要。此类预测在产科实践中一直是一项挑战,在孕期多个孕周进行的纵向超声测量可能有助于预测各种不良妊娠结局。本文的重点是为多变量纵向超声测量开发一类灵活的联合模型,该模型可用于预测出生时的二元事件。针对超声测量提出了一个偏态多变量随机效应模型,并假定偏态广义t连接用于关联二元事件和潜在纵向过程的连接函数。我们考虑使用一个共享随机效应将这两个过程联系起来。马尔可夫链蒙特卡罗抽样用于进行贝叶斯后验计算。通过偏差信息准则、伪边际似然对数,并采用训练 - 测试集预测范式,对所提出模型的几种变体进行了考虑和比较。利用美国国立儿童健康与人类发展研究所(NICHD)连续小于胎龄儿出生研究的数据对所提出的方法进行了说明,该研究是在挪威和瑞典进行的一项大型前瞻性胎儿生长队列研究。

相似文献

1
A class of joint models for multivariate longitudinal measurements and a binary event.
Biometrics. 2016 Sep;72(3):917-25. doi: 10.1111/biom.12463. Epub 2016 Jan 11.
2
A Bayesian growth mixture model to examine maternal hypertension and birth outcomes.
Stat Med. 2011 Sep 30;30(22):2721-35. doi: 10.1002/sim.4291. Epub 2011 Jul 12.
4
Joint modeling of zero-inflated longitudinal measurements and time-to-event outcomes with applications to dynamic prediction.
Stat Methods Med Res. 2024 Oct;33(10):1731-1767. doi: 10.1177/09622802241268466. Epub 2024 Oct 7.
5
Predicting large fetuses at birth: do multiple ultrasound examinations and longitudinal statistical modelling improve prediction?
Paediatr Perinat Epidemiol. 2012 May;26(3):199-207. doi: 10.1111/j.1365-3016.2012.01261.x. Epub 2012 Feb 10.
6
Tractable Bayes of skew-elliptical link models for correlated binary data.
Biometrics. 2023 Sep;79(3):1788-1800. doi: 10.1111/biom.13731. Epub 2022 Sep 6.
10
Fetal Medicine Foundation fetal and neonatal population weight charts.
Ultrasound Obstet Gynecol. 2018 Jul;52(1):44-51. doi: 10.1002/uog.19073. Epub 2018 May 30.

引用本文的文献

1
Joint modelling of longitudinal data: a scoping review of methodology and applications for non-time to event data.
BMC Med Res Methodol. 2025 Feb 17;25(1):40. doi: 10.1186/s12874-025-02485-6.
2
Bayesian semiparametric joint modeling of a count outcome and inconveniently timed longitudinal predictors.
Stat Methods Med Res. 2023 May;32(5):853-867. doi: 10.1177/09622802231154325. Epub 2023 Feb 28.
3
Bayesian Joint Modeling of Multivariate Longitudinal and Survival Data With an Application to Diabetes Study.
Front Big Data. 2022 Apr 27;5:812725. doi: 10.3389/fdata.2022.812725. eCollection 2022.
4
5
Risk factor identification in cystic fibrosis by flexible hierarchical joint models.
Stat Methods Med Res. 2021 Jan;30(1):244-260. doi: 10.1177/0962280220950369. Epub 2020 Aug 25.
6
Harnessing repeated measurements of predictor variables for clinical risk prediction: a review of existing methods.
Diagn Progn Res. 2020 Jul 9;4:9. doi: 10.1186/s41512-020-00078-z. eCollection 2020.
7
Flexible link functions in a joint hierarchical Gaussian process model.
Biometrics. 2021 Jun;77(2):754-764. doi: 10.1111/biom.13291. Epub 2020 May 28.

本文引用的文献

1
Predicting large fetuses at birth: do multiple ultrasound examinations and longitudinal statistical modelling improve prediction?
Paediatr Perinat Epidemiol. 2012 May;26(3):199-207. doi: 10.1111/j.1365-3016.2012.01261.x. Epub 2012 Feb 10.
2
A linear mixed model for predicting a binary event from longitudinal data under random effects misspecification.
Stat Med. 2012 Jan 30;31(2):143-54. doi: 10.1002/sim.4405. Epub 2011 Nov 14.
3
A Bayesian latent variable mixture model for longitudinal fetal growth.
Biometrics. 2009 Dec;65(4):1233-42. doi: 10.1111/j.1541-0420.2009.01188.x.
4
Bayesian analysis for generalized linear models with nonignorably missing covariates.
Biometrics. 2005 Sep;61(3):767-80. doi: 10.1111/j.1541-0420.2005.00338.x.
5
On criteria for evaluating models of absolute risk.
Biostatistics. 2005 Apr;6(2):227-39. doi: 10.1093/biostatistics/kxi005.
6
Individualized growth assessment: evaluation of growth using each fetus as its own control.
Semin Perinatol. 2004 Feb;28(1):23-32. doi: 10.1053/j.semperi.2003.10.011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验