Suppr超能文献

贝叶斯半参数计数结果与不便时间纵向预测变量的联合建模。

Bayesian semiparametric joint modeling of a count outcome and inconveniently timed longitudinal predictors.

机构信息

Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, USA.

Division of Cancer Prevention and Control, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.

出版信息

Stat Methods Med Res. 2023 May;32(5):853-867. doi: 10.1177/09622802231154325. Epub 2023 Feb 28.

Abstract

The Women's Health Initiative (WHI) Life and Longevity After Cancer (LILAC) study is an excellent resource for studying the quality of life following breast cancer treatment. At study entry, women were asked about new symptoms that appeared following their initial cancer treatment. In this article, we were interested in using regression modeling to estimate associations of clinical and lifestyle factors at cancer diagnosis (independent variables) with the number of new symptoms (dependent variable). Although clinical and lifestyle data were collected longitudinally, few measurements were obtained at diagnosis or at a consistent timepoint prior to diagnosis, which complicates the analysis. Furthermore, parametric count models, such as the Poisson and negative binomial, do not fit the symptom data well. Thus, motivated by the issues encountered in LILAC, we propose two Bayesian joint models for longitudinal data and a count outcome. Our two models differ according to the assumption on the outcome distribution: one uses a negative binomial (NB) distribution and the other a nonparametric rounded mixture of Gaussians (RMG). The mean of each count distribution is dependent on imputed values of continuous, binary, and ordinal variables at a time point of interest (e.g. diagnosis). To facilitate imputation, longitudinal variables are modeled jointly using a linear mixed model for a latent underlying normal random variable, and a Dirichlet process prior is assigned to the random subject-specific effects to relax distribution assumptions. In simulation studies, the RMG joint model exhibited superior power and predictive accuracy over the NB model when the data were not NB. The RMG joint model also outperformed an RMG model containing predictors imputed using the last value carried forward, which generated estimates that were biased toward the null. We used our models to examine the relationship between sleep health at diagnosis and the number of new symptoms following breast cancer treatment in LILAC.

摘要

妇女健康倡议(WHI)癌症后生命与长寿(LILAC)研究是研究乳腺癌治疗后生活质量的绝佳资源。在研究开始时,女性被问及在初始癌症治疗后出现的新症状。在本文中,我们有兴趣使用回归建模来估计癌症诊断时的临床和生活方式因素(自变量)与新症状数量(因变量)之间的关联。尽管临床和生活方式数据是纵向收集的,但在诊断时或在诊断前的一致时间点很少获得测量值,这使得分析变得复杂。此外,参数计数模型,如泊松和负二项式,并不适合症状数据。因此,受 LILAC 中遇到的问题的启发,我们提出了两种用于纵向数据和计数结果的贝叶斯联合模型。我们的两个模型根据结果分布的假设而有所不同:一个使用负二项式(NB)分布,另一个使用非参数圆形高斯混合(RMG)。每个计数分布的均值取决于在感兴趣的时间点(例如诊断)的连续、二进制和有序变量的推断值。为了便于推断,使用潜在正态随机变量的线性混合模型联合建模纵向变量,并为随机个体特定效果分配狄利克雷过程先验,以放宽分布假设。在模拟研究中,当数据不是 NB 时,RMG 联合模型比 NB 模型表现出更高的功效和预测准确性。RMG 联合模型也优于使用最后一个向前推进的预测值进行预测的 RMG 模型,后者产生的估计值偏向于零。我们使用我们的模型来研究 LILAC 中诊断时的睡眠健康与乳腺癌治疗后新症状数量之间的关系。

相似文献

6
Bayesian inference in semiparametric mixed models for longitudinal data.纵向数据半参数混合模型中的贝叶斯推断。
Biometrics. 2010 Mar;66(1):70-8. doi: 10.1111/j.1541-0420.2009.01227.x. Epub 2009 May 7.

本文引用的文献

8
Long-term Toxicity of Cancer Treatment in Older Patients.老年患者癌症治疗的长期毒性
Clin Geriatr Med. 2016 Feb;32(1):63-80. doi: 10.1016/j.cger.2015.08.005. Epub 2015 Oct 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验