Suppr超能文献

一种线性混合模型,用于在随机效应误指定的情况下预测纵向数据中的二元事件。

A linear mixed model for predicting a binary event from longitudinal data under random effects misspecification.

机构信息

Biostatistics and Bioinformatics Branch, Division of Epidemiology, Statistics, and Prevention Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA.

出版信息

Stat Med. 2012 Jan 30;31(2):143-54. doi: 10.1002/sim.4405. Epub 2011 Nov 14.

Abstract

The use of longitudinal data for predicting a subsequent binary event is often the focus of diagnostic studies. This is particularly important in obstetrics, where ultrasound measurements taken during fetal development may be useful for predicting various poor pregnancy outcomes. We propose a modeling framework for predicting a binary event from longitudinal measurements where a shared random effect links the two processes together. Under a Gaussian random effects assumption, the approach is simple to implement with standard statistical software. Using asymptotic and simulation results, we show that estimates of predictive accuracy under a Gaussian random effects distribution are robust to severe misspecification of this distribution. However, under some circumstances, estimates of individual risk may be sensitive to severe random effects misspecification. We illustrate the methodology with data from a longitudinal fetal growth study.

摘要

利用纵向数据预测随后的二项事件通常是诊断研究的重点。在妇产科中,这一点尤为重要,因为胎儿发育过程中进行的超声测量可能有助于预测各种不良妊娠结局。我们提出了一种从纵向测量值预测二项事件的建模框架,其中共享随机效应将两个过程联系在一起。在高斯随机效应假设下,该方法使用标准统计软件即可轻松实现。通过渐近和模拟结果,我们表明,在高斯随机效应分布下,预测准确性的估计值对于该分布的严重误设是稳健的。但是,在某些情况下,个体风险的估计值可能会对严重的随机效应误设敏感。我们使用纵向胎儿生长研究的数据说明了该方法。

相似文献

1
A linear mixed model for predicting a binary event from longitudinal data under random effects misspecification.
Stat Med. 2012 Jan 30;31(2):143-54. doi: 10.1002/sim.4405. Epub 2011 Nov 14.
2
The impact of random-effect misspecification on percentile estimation for longitudinal growth data.
Stat Med. 2012 Dec 10;31(28):3708-18. doi: 10.1002/sim.5437. Epub 2012 Jul 11.
3
A class of joint models for multivariate longitudinal measurements and a binary event.
Biometrics. 2016 Sep;72(3):917-25. doi: 10.1111/biom.12463. Epub 2016 Jan 11.
4
The effect of random-effects misspecification on classification accuracy.
Int J Biostat. 2021 Mar 26;18(1):279-292. doi: 10.1515/ijb-2019-0159.
5
Diagnosis of random-effect model misspecification in generalized linear mixed models for binary response.
Biometrics. 2009 Jun;65(2):361-8. doi: 10.1111/j.1541-0420.2008.01103.x.
6
Combination of longitudinal biomarkers in predicting binary events.
Biostatistics. 2014 Oct;15(4):706-18. doi: 10.1093/biostatistics/kxu020. Epub 2014 May 14.
7
A joint modeling approach to data with informative cluster size: robustness to the cluster size model.
Stat Med. 2011 Jul 10;30(15):1825-36. doi: 10.1002/sim.4239. Epub 2011 Apr 15.
8
An approximate joint model for multiple paired longitudinal outcomes and time-to-event data.
Biometrics. 2018 Sep;74(3):1112-1119. doi: 10.1111/biom.12862. Epub 2018 Feb 28.
9
Prediction of random effects in linear and generalized linear models under model misspecification.
Biometrics. 2011 Mar;67(1):270-9. doi: 10.1111/j.1541-0420.2010.01435.x.

引用本文的文献

3
4
The effect of random-effects misspecification on classification accuracy.
Int J Biostat. 2021 Mar 26;18(1):279-292. doi: 10.1515/ijb-2019-0159.
6
Statistical approaches using longitudinal biomarkers for disease early detection: A comparison of methodologies.
Stat Med. 2020 Dec 20;39(29):4405-4420. doi: 10.1002/sim.8731. Epub 2020 Sep 16.
7
Harnessing repeated measurements of predictor variables for clinical risk prediction: a review of existing methods.
Diagn Progn Res. 2020 Jul 9;4:9. doi: 10.1186/s41512-020-00078-z. eCollection 2020.
8
The ROC curve for regularly measured longitudinal biomarkers.
Biostatistics. 2019 Jul 1;20(3):433-451. doi: 10.1093/biostatistics/kxy010.
9
Prediction complements explanation in understanding the developing brain.
Nat Commun. 2018 Feb 21;9(1):589. doi: 10.1038/s41467-018-02887-9.
10
A Two-Step Approach for Analysis of Nonignorable Missing Outcomes in Longitudinal Regression: an Application to Upstate KIDS Study.
Paediatr Perinat Epidemiol. 2017 Sep;31(5):468-478. doi: 10.1111/ppe.12382. Epub 2017 Aug 2.

本文引用的文献

1
Prediction based classification for longitudinal biomarkers.
Ann Appl Stat. 2010 Sep;4(3):1476-1497. doi: 10.1214/10-AOAS326.
2
Prediction of random effects in linear and generalized linear models under model misspecification.
Biometrics. 2011 Mar;67(1):270-9. doi: 10.1111/j.1541-0420.2010.01435.x.
3
A Bayesian latent variable mixture model for longitudinal fetal growth.
Biometrics. 2009 Dec;65(4):1233-42. doi: 10.1111/j.1541-0420.2009.01188.x.
4
Type I and Type II error under random-effects misspecification in generalized linear mixed models.
Biometrics. 2007 Dec;63(4):1038-44. doi: 10.1111/j.1541-0420.2007.00782.x. Epub 2007 Apr 9.
5
Joint modeling of survival and longitudinal data: likelihood approach revisited.
Biometrics. 2006 Dec;62(4):1037-43. doi: 10.1111/j.1541-0420.2006.00570.x.
6
On criteria for evaluating models of absolute risk.
Biostatistics. 2005 Apr;6(2):227-39. doi: 10.1093/biostatistics/kxi005.
7
Individualized growth assessment: evaluation of growth using each fetus as its own control.
Semin Perinatol. 2004 Feb;28(1):23-32. doi: 10.1053/j.semperi.2003.10.011.
8
General growth mixture modeling for randomized preventive interventions.
Biostatistics. 2002 Dec;3(4):459-75. doi: 10.1093/biostatistics/3.4.459.
9
A semiparametric likelihood approach to joint modeling of longitudinal and time-to-event data.
Biometrics. 2002 Dec;58(4):742-53. doi: 10.1111/j.0006-341x.2002.00742.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验