Suppr超能文献

理解“两个定量构效关系”的作用。

Understanding the Roles of the "Two QSARs".

作者信息

Fujita Toshio, Winkler David A

机构信息

Professor Emeritus at Kyoto University , 38-1 Iwakura-Miyakecho, Kyoto, Japan 606-0022.

CSIRO Manufacturing , Bag 10, Clayton South MDC 3169, Australia.

出版信息

J Chem Inf Model. 2016 Feb 22;56(2):269-74. doi: 10.1021/acs.jcim.5b00229. Epub 2016 Jan 20.

Abstract

Quantitative structure-activity relationship (QSAR) modeling has matured over the past 50 years and has been very useful in discovering and optimizing drug leads. Although its roots were in extra-thermodynamic relationships within small sets of chemically similar molecules focused on mechanistic interpretation, a second class of QSAR models has emerged that relies on machine learning methods to generate models from large, chemically diverse data sets for predictive purposes. There has been a tension between the two groups of QSAR practitioners that is unnecessary and possibly counterproductive. This paper explains the difference in philosophy and application of these two distinct, but equally important, classes of QSAR models and how they can work together synergistically to accelerate the discovery of new drugs or materials.

摘要

定量构效关系(QSAR)建模在过去50年中已经成熟,并且在发现和优化药物先导物方面非常有用。尽管它起源于专注于机理解释的一小类化学相似分子的超热力学关系,但现在已经出现了第二类QSAR模型,这类模型依靠机器学习方法从大量化学性质多样的数据集中生成模型用于预测目的。两组QSAR从业者之间存在一种紧张关系,这种紧张关系是不必要的,而且可能适得其反。本文解释了这两类截然不同但同样重要的QSAR模型在理念和应用上的差异,以及它们如何协同工作以加速新药或新材料的发现。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验