Marée Raphaël, Rollus Loïc, Stévens Benjamin, Hoyoux Renaud, Louppe Gilles, Vandaele Rémy, Begon Jean-Michel, Kainz Philipp, Geurts Pierre, Wehenkel Louis
Systems and Modeling, Department of Electrical Engineering and Computer Science and GIGA-Research, University of Liège, Liège, Belgium Bioimage Analysis Unit, Institut Pasteur, Paris, France.
Systems and Modeling, Department of Electrical Engineering and Computer Science and GIGA-Research, University of Liège, Liège, Belgium.
Bioinformatics. 2016 May 1;32(9):1395-401. doi: 10.1093/bioinformatics/btw013. Epub 2016 Jan 10.
Collaborative analysis of massive imaging datasets is essential to enable scientific discoveries.
We developed Cytomine to foster active and distributed collaboration of multidisciplinary teams for large-scale image-based studies. It uses web development methodologies and machine learning in order to readily organize, explore, share and analyze (semantically and quantitatively) multi-gigapixel imaging data over the internet. We illustrate how it has been used in several biomedical applications.
Cytomine (http://www.cytomine.be/) is freely available under an open-source license from http://github.com/cytomine/ A documentation wiki (http://doc.cytomine.be) and a demo server (http://demo.cytomine.be) are also available.
Supplementary data are available at Bioinformatics online.
对海量成像数据集进行协作分析对于实现科学发现至关重要。
我们开发了Cytomine,以促进多学科团队在大规模基于图像的研究中的积极且分布式协作。它使用网页开发方法和机器学习,以便在互联网上轻松地(从语义和定量方面)组织、探索、共享和分析多千兆像素成像数据。我们展示了它在多个生物医学应用中的使用方式。
补充数据可在《生物信息学》在线获取。