Suppr超能文献

数字病理学中空间组学数据分析的机器学习方法:泌尿生殖系统肿瘤学中的工具与应用

Machine learning approaches for spatial omics data analysis in digital pathology: tools and applications in genitourinary oncology.

作者信息

Kim Hojung, Kim Jina, Yeon Su Yeon, You Sungyong

机构信息

Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, United States.

Department of Pathology, University of Illinois at Chicago, Chicago, IL, United States.

出版信息

Front Oncol. 2024 Nov 29;14:1465098. doi: 10.3389/fonc.2024.1465098. eCollection 2024.

Abstract

Recent advances in spatial omics technologies have enabled new approaches for analyzing tissue morphology, cell composition, and biomolecule expression patterns . These advances are promoting the development of new computational tools and quantitative techniques in the emerging field of digital pathology. In this review, we survey current trends in the development of computational methods for spatially mapped omics data analysis using digitized histopathology slides and supplementary materials, with an emphasis on tools and applications relevant to genitourinary oncological research. The review contains three sections: 1) an overview of image processing approaches for histopathology slide analysis; 2) machine learning integration with spatially resolved omics data analysis; 3) a discussion of current limitations and future directions for integration of machine learning in the clinical decision-making process.

摘要

空间组学技术的最新进展为分析组织形态、细胞组成和生物分子表达模式带来了新方法。这些进展正在推动数字病理学这一新兴领域中新的计算工具和定量技术的发展。在本综述中,我们使用数字化组织病理学切片和补充材料,调查了用于空间映射组学数据分析的计算方法的当前发展趋势,重点关注与泌尿生殖系统肿瘤学研究相关的工具和应用。本综述包含三个部分:1)组织病理学切片分析的图像处理方法概述;2)机器学习与空间分辨组学数据分析的整合;3)对机器学习在临床决策过程中整合的当前局限性和未来方向的讨论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28fd/11638011/71d4cfe1b19c/fonc-14-1465098-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验