Spichal Maya, Brion Alice, Herbert Sébastien, Cournac Axel, Marbouty Martial, Zimmer Christophe, Koszul Romain, Fabre Emmanuelle
INSERM UMR 944, Equipe Biologie et Dynamique des Chromosomes, Institut Universitaire d'Hématologie, Hôpital St. Louis 1, Avenue Claude Vellefaux, Paris 75010, France CNRS, UMR 7212, Paris 75010, France Université Paris Diderot, Sorbonne Paris Cité, Paris 75010, France Institut Pasteur, Groupe Régulation Spatiale des Génomes, Paris 75015, France CNRS, UMR 3525, Paris 75015, France Sorbonne Universités, UPMC Université Paris 6, Paris 75005, France.
INSERM UMR 944, Equipe Biologie et Dynamique des Chromosomes, Institut Universitaire d'Hématologie, Hôpital St. Louis 1, Avenue Claude Vellefaux, Paris 75010, France CNRS, UMR 7212, Paris 75010, France Université Paris Diderot, Sorbonne Paris Cité, Paris 75010, France.
J Cell Sci. 2016 Feb 15;129(4):681-92. doi: 10.1242/jcs.175745. Epub 2016 Jan 13.
Eukaryotic chromosomes undergo movements that are involved in the regulation of functional processes such as DNA repair. To better understand the origin of these movements, we used fluorescence microscopy, image analysis and chromosome conformation capture to quantify the actin contribution to chromosome movements and interactions in budding yeast. We show that both the cytoskeletal and nuclear actin drive local chromosome movements, independently of Csm4, a putative LINC protein. Inhibition of actin polymerization reduces subtelomere dynamics, resulting in more confined territories and enrichment in subtelomeric contacts. Artificial tethering of actin to nuclear pores increased both nuclear pore complex (NPC) and subtelomere motion. Chromosome loci that were positioned away from telomeres exhibited reduced motion in the presence of an actin polymerization inhibitor but were unaffected by the lack of Csm4. We further show that actin was required for locus mobility that was induced by targeting the chromatin-remodeling protein Ino80. Correlated with this, DNA repair by homologous recombination was less efficient. Overall, interphase chromosome dynamics are modulated by the additive effects of cytoskeletal actin through forces mediated by the nuclear envelope and nuclear actin, probably through the function of actin in chromatin-remodeling complexes.
真核生物染色体经历的运动参与了诸如DNA修复等功能过程的调控。为了更好地理解这些运动的起源,我们使用荧光显微镜、图像分析和染色体构象捕获技术来量化肌动蛋白对芽殖酵母中染色体运动和相互作用的贡献。我们发现,细胞骨架肌动蛋白和核肌动蛋白均驱动局部染色体运动,且独立于一种假定的LINC蛋白Csm4。肌动蛋白聚合的抑制会降低亚端粒动力学,导致区域更加受限以及亚端粒接触增多。将肌动蛋白人工连接到核孔会增加核孔复合体(NPC)和亚端粒的运动。在存在肌动蛋白聚合抑制剂的情况下,远离端粒定位的染色体位点运动减少,但不受Csm4缺失的影响。我们进一步表明,肌动蛋白是通过靶向染色质重塑蛋白Ino80诱导的位点迁移所必需的。与此相关的是,同源重组介导的DNA修复效率较低。总体而言,间期染色体动力学受细胞骨架肌动蛋白通过核膜和核肌动蛋白介导的力产生的累加效应调节,这可能是通过肌动蛋白在染色质重塑复合体中的功能实现的。