Nguyen Hoang V, Waller Niels G
University of Minnesota, Twin Cities, Minneapolis, USA.
Educ Psychol Meas. 2024 Dec;84(6):1045-1075. doi: 10.1177/00131644231223722. Epub 2024 Jan 23.
We conducted an extensive Monte Carlo study of factor-rotation local solutions (LS) in multidimensional, two-parameter logistic (M2PL) item response models. In this study, we simulated more than 19,200 data sets that were drawn from 96 model conditions and performed more than 7.6 million rotations to examine the influence of (a) slope parameter sizes, (b) number of indicators per factor (trait), (c) probabilities of cross-loadings, (d) factor correlation sizes, (e) model approximation error, and (f) sample sizes on the local solution rates of the oblimin and (oblique) geomin rotation algorithms. To accommodate these design variables, we extended the standard M2PL model to include correlated major factors and uncorrelated minor factors (to represent model error). Our results showed that both rotation methods converged to LS under some conditions with geomin producing the highest local solution rates across many models. Our results also showed that, for identical item response patterns, rotation LS can produce different latent trait estimates with different levels of measurement precision (as indexed by the conditional standard error of measurement). Follow-up analyses revealed that when rotation algorithms converged to multiple solutions, quantitative indices of structural fit, such as numerical measures of simple structure, will often misidentify the rotation that is closest in mean-squared error to the factor pattern (or item-slope pattern) of the data-generating model.
我们对多维两参数逻辑斯蒂(M2PL)项目反应模型中的因子旋转局部解(LS)进行了广泛的蒙特卡罗研究。在本研究中,我们模拟了超过19200个数据集,这些数据集来自96种模型条件,并进行了超过760万次旋转,以检验以下因素对oblimin和(斜交)geomin旋转算法局部解率的影响:(a)斜率参数大小;(b)每个因子(特质)的指标数量;(c)交叉载荷概率;(d)因子相关大小;(e)模型近似误差;(f)样本大小。为了适应这些设计变量,我们扩展了标准M2PL模型,纳入相关的主要因子和不相关的次要因子(以表示模型误差)。我们的结果表明,在某些条件下,两种旋转方法都收敛到局部解,其中geomin在许多模型中产生的局部解率最高。我们的结果还表明,对于相同的项目反应模式,旋转局部解可以产生具有不同测量精度水平(以条件测量标准误差为指标)的不同潜在特质估计值。后续分析表明,当旋转算法收敛到多个解时,结构拟合的定量指标,如简单结构的数值度量,往往会错误识别在均方误差上最接近数据生成模型的因子模式(或项目斜率模式)的旋转。