Nguyen-Thi Nhung, Doucet Nicolas
INRS-Institut Armand-Frappier, Université du Québec, 531 Boul. des Prairies, Laval, Québec H7V 1B7, Canada.
INRS-Institut Armand-Frappier, Université du Québec, 531 Boul. des Prairies, Laval, Québec H7V 1B7, Canada; PROTEO, The Québec Network for Research on Protein Function, Engineering, and Applications, 1045 Avenue de la Médecine, Université Laval, Québec, Québec, G1V 0A6, Canada; GRASP, The Groupe de Recherche Axé sur la Structure des Protéines, 3649 Promenade Sir William Osler, McGill University, Montréal, Québec, H3G 0B1, Canada.
J Biotechnol. 2016 Feb 20;220:25-32. doi: 10.1016/j.jbiotec.2015.12.038. Epub 2016 Jan 6.
The enzymatic bioconversion of chitin is of considerable interest for the natural production of bioactive compounds such as chitooligosaccharides and N-acetyl-d-glucosamine (GlcNAc). Key enzymes are involved in the natural processing of chitin, hydrolyzing this abundant biopolymer to yield chitooligosaccharides with substantial value to the medicinal and biotechnological fields. In this study, chitinase C (ScChiC) from the soil bacterium and chitin decomposer Streptomyces coelicolor A3(2) was expressed, purified and characterized. We also optimized a Streptomyces lividans system generating ScChiC expression yields nearly 500-fold higher than the previously reported heterologous expression in Escherichia coli. The purified enzyme was found to be stable below 55°C for a broad range of pH values (pH 3.5-9) and exhibited high activity against chitin and chitooligosaccharides to form chitobiose (C2) as main product. Crab shell chitin hydrolysis profiles also revealed that ScChiC catalyzes the bioconversion of chitopolysaccharides through an endo-nonprocessive mode of action. When combining ScChiC with an N-acetylhexosaminidase from S. coelicolor A3(2) (ScHEX) in an assay using crude extracts and crystalline chitin as substrate, GlcNAc was generated as final product with a yield over 90% after 8h incubation. This chitin hydrolysis yield represents one of the most efficient enzyme bioconversion of chitopolysaccharides to GlcNAc characterized to date, making the S. coelicolor ScChiC-ScHEX pair a potentially suitable contender for the viable industrial production of this important bioactive compound.
几丁质的酶促生物转化对于天然生产生物活性化合物(如壳寡糖和N-乙酰-D-葡萄糖胺(GlcNAc))具有相当大的吸引力。关键酶参与几丁质的天然加工过程,将这种丰富的生物聚合物水解,产生对医药和生物技术领域具有重要价值的壳寡糖。在本研究中,对来自土壤细菌和几丁质分解菌天蓝色链霉菌A3(2)的几丁质酶C(ScChiC)进行了表达、纯化和表征。我们还优化了一个变铅青链霉菌系统,该系统产生的ScChiC表达量比先前报道的在大肠杆菌中的异源表达高出近500倍。发现纯化后的酶在55°C以下、较宽的pH值范围(pH 3.5 - 9)内稳定,并且对几丁质和壳寡糖表现出高活性,以形成壳二糖(C2)作为主要产物。蟹壳几丁质水解曲线还表明,ScChiC通过内切非连续作用模式催化壳聚糖的生物转化。当在使用粗提物和结晶几丁质作为底物的测定中,将ScChiC与来自天蓝色链霉菌A3(2)的N-乙酰己糖胺酶(ScHEX)结合时,孵育8小时后,最终产物GlcNAc的产率超过90%。这种几丁质水解产率代表了迄今为止所表征的将壳聚糖酶促生物转化为GlcNAc的最有效方法之一,使得天蓝色链霉菌ScChiC - ScHEX组合成为这种重要生物活性化合物可行工业化生产的潜在合适竞争者。