Suppr超能文献

利用计算建模优化在黏液中捕获病毒的抗体设计。

Using Computational Modeling To Optimize the Design of Antibodies That Trap Viruses in Mucus.

作者信息

Wessler Timothy, Chen Alex, McKinley Scott A, Cone Richard, Forest Gregory, Lai Samuel K

机构信息

Departments of Mathematics and Applied Physical Science, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, United States.

Mathematics Department, Tulane University, New Orleans, Louisiana 70118, United States.

出版信息

ACS Infect Dis. 2016 Jan 8;2(1):82-92. doi: 10.1021/acsinfecdis.5b00108. Epub 2015 Oct 17.

Abstract

Immunoglobulin G (IgG) antibodies that trap viruses in cervicovaginal mucus (CVM) via adhesive interactions between IgG-Fc and mucins have recently emerged as a promising strategy to block vaginally transmitted infections. The array of IgG bound to a virus particle appears to trap the virus by making multiple weak affinity bonds to the fibrous mucins that form the mucus gel. However, the antibody characteristics that maximize virus trapping and minimize viral infectivity remain poorly understood. Toward this goal, we developed a mathematical model that takes into account physiologically relevant spatial dimensions and time scales, binding, and unbinding rates between IgG and virions and between IgG and mucins, as well as the respective diffusivities of virions and IgG in semen and CVM. We then systematically explored the IgG-antigen and IgG-mucin binding and unbinding rates that minimize the flux of infectious HIV arriving at the vaginal epithelium. Surprisingly, contrary to common intuition that infectivity would drop monotonically with increasing affinities between IgG and HIV, and between IgG and mucins, our model suggests maximal trapping of HIV and minimal flux of HIV to the epithelium are achieved with IgG molecules that exhibit (i) rapid antigen binding (high ) rather than very slow unbinding (low ), that is, high-affinity binding to the virion, and (ii) relatively weak affinity with mucins. These results provide important insights into the design of more potent "mucotrapping" IgG for enhanced protection against vaginally transmitted infections. The model is adaptable to other pathogens, mucosal barriers, geometries, and kinetic and diffusional effects, providing a tool for hypothesis testing and producing quantitative insights into the dynamics of immune-mediated protection.

摘要

通过免疫球蛋白G(IgG)的Fc段与粘蛋白之间的黏附相互作用将病毒捕获在宫颈阴道黏液(CVM)中的IgG抗体,最近已成为一种阻断经阴道传播感染的有前景的策略。与病毒颗粒结合的IgG阵列似乎通过与形成黏液凝胶的纤维状粘蛋白形成多个弱亲和力键来捕获病毒。然而,能使病毒捕获最大化并使病毒感染性最小化的抗体特性仍知之甚少。为实现这一目标,我们开发了一个数学模型,该模型考虑了生理相关的空间维度和时间尺度、IgG与病毒粒子之间以及IgG与粘蛋白之间的结合和解离速率,以及病毒粒子和IgG在精液和CVM中的各自扩散率。然后,我们系统地探索了能使到达阴道上皮的感染性HIV通量最小化的IgG-抗原和IgG-粘蛋白结合和解离速率。令人惊讶的是,与通常认为感染性会随着IgG与HIV之间以及IgG与粘蛋白之间亲和力的增加而单调下降的直觉相反,我们的模型表明,具有以下特性的IgG分子能实现HIV的最大捕获和HIV向上皮的最小通量:(i)快速的抗原结合(高 )而非非常缓慢的解离(低 ),即与病毒粒子的高亲和力结合,以及(ii)与粘蛋白的相对较弱亲和力。这些结果为设计更有效的“黏液捕获”IgG以增强对经阴道传播感染的保护提供了重要见解。该模型适用于其他病原体、黏膜屏障、几何形状以及动力学和扩散效应,为假设检验提供了一个工具,并能对免疫介导保护的动力学产生定量见解。

相似文献

1
Using Computational Modeling To Optimize the Design of Antibodies That Trap Viruses in Mucus.
ACS Infect Dis. 2016 Jan 8;2(1):82-92. doi: 10.1021/acsinfecdis.5b00108. Epub 2015 Oct 17.
2
Broadly neutralizing antibodies consistently trap HIV-1 in fresh cervicovaginal mucus from select individuals.
Acta Biomater. 2023 Oct 1;169:387-397. doi: 10.1016/j.actbio.2023.07.031. Epub 2023 Jul 26.
3
Transient antibody-mucin interactions produce a dynamic molecular shield against viral invasion.
Biophys J. 2014 May 6;106(9):2028-36. doi: 10.1016/j.bpj.2014.02.038.
4
Modeling Barrier Properties of Intestinal Mucus Reinforced with IgG and Secretory IgA against Motile Bacteria.
ACS Infect Dis. 2019 Sep 13;5(9):1570-1580. doi: 10.1021/acsinfecdis.9b00109. Epub 2019 Jul 3.
6
Anti-PEG antibodies alter the mobility and biodistribution of densely PEGylated nanoparticles in mucus.
Acta Biomater. 2016 Oct 1;43:61-70. doi: 10.1016/j.actbio.2016.07.019. Epub 2016 Jul 14.
8
IgG in cervicovaginal mucus traps HSV and prevents vaginal herpes infections.
Mucosal Immunol. 2014 Sep;7(5):1036-44. doi: 10.1038/mi.2013.120. Epub 2014 Feb 5.
10
The biophysical principles underpinning muco-trapping functions of antibodies.
Hum Vaccin Immunother. 2022 Apr 29;18(2):1939605. doi: 10.1080/21645515.2021.1939605. Epub 2021 Jul 27.

引用本文的文献

1
Drug and therapeutic intravaginal delivery targeting diseases in the female reproductive tract: A mathematical modeling perspective.
J Control Release. 2025 Aug 10;384:113924. doi: 10.1016/j.jconrel.2025.113924. Epub 2025 Jun 2.
3
5
The power of weak, transient interactions across biology: A paradigm of emergent behavior.
Physica D. 2023 Nov 15;454. doi: 10.1016/j.physd.2023.133866. Epub 2023 Aug 4.
7
Antibody protection from SARS-CoV-2 respiratory tract exposure and infection.
J Theor Biol. 2023 Jan 21;557:111334. doi: 10.1016/j.jtbi.2022.111334. Epub 2022 Oct 25.
10
Aerosol Transport Modeling: The Key Link Between Lung Infections of Individuals and Populations.
Front Physiol. 2022 Jun 20;13:923945. doi: 10.3389/fphys.2022.923945. eCollection 2022.

本文引用的文献

2
3
Continuous downstream processing for high value biological products: A Review.
Biotechnol Bioeng. 2016 Mar;113(3):465-75. doi: 10.1002/bit.25695. Epub 2015 Aug 27.
4
Antibody responses to envelope glycoproteins in HIV-1 infection.
Nat Immunol. 2015 Jun;16(6):571-6. doi: 10.1038/ni.3158.
5
Strategies for preventing mucosal cell-associated HIV transmission.
J Infect Dis. 2014 Dec 15;210 Suppl 3(Suppl 3):S674-80. doi: 10.1093/infdis/jiu398.
7
Transient antibody-mucin interactions produce a dynamic molecular shield against viral invasion.
Biophys J. 2014 May 6;106(9):2028-36. doi: 10.1016/j.bpj.2014.02.038.
8
IgG in cervicovaginal mucus traps HSV and prevents vaginal herpes infections.
Mucosal Immunol. 2014 Sep;7(5):1036-44. doi: 10.1038/mi.2013.120. Epub 2014 Feb 5.
9
Antibodies in HIV-1 vaccine development and therapy.
Science. 2013 Sep 13;341(6151):1199-204. doi: 10.1126/science.1241144.
10
Broadly neutralizing antibodies against HIV-1: templates for a vaccine.
Virology. 2013 Jan 5;435(1):46-56. doi: 10.1016/j.virol.2012.10.004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验