Suppr超能文献

协同作用:驱动管腔形态发生的组织产生的力。

Pulling together: Tissue-generated forces that drive lumen morphogenesis.

作者信息

Navis Adam, Nelson Celeste M

机构信息

Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, United States.

Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, United States; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States.

出版信息

Semin Cell Dev Biol. 2016 Jul;55:139-47. doi: 10.1016/j.semcdb.2016.01.002. Epub 2016 Jan 8.

Abstract

Mechanical interactions are essential for bending and shaping tissues during morphogenesis. A common feature of nearly all internal organs is the formation of a tubular network consisting of an epithelium that surrounds a central lumen. Lumen formation during organogenesis requires precisely coordinated mechanical and biochemical interactions. Whereas many genetic regulators of lumen formation have been identified, relatively little is known about the mechanical cues that drive lumen morphogenesis. Lumens can be shaped by a variety of physical behaviors including wrapping a sheet of cells around a hollow core, rearranging cells to expose a lumenal cavity, or elongating a tube via cell migration, though many of the details underlying these movements remain poorly understood. It is essential to define how forces generated by individual cells cooperate to produce the tissue-level forces that drive organogenesis. Transduction of mechanical forces relies on several conserved processes including the contraction of cytoskeletal networks or expansion of lumens through increased fluid pressure. The morphogenetic events that drive lumen formation serve as a model for similar mechanical processes occurring throughout development. To understand how lumenal networks arise, it will be essential to investigate how biochemical and mechanical processes integrate to generate complex structures from comparatively simple interactions.

摘要

在形态发生过程中,机械相互作用对于组织的弯曲和塑形至关重要。几乎所有内部器官的一个共同特征是形成由围绕中央管腔的上皮细胞组成的管状网络。器官发生过程中的管腔形成需要精确协调的机械和生化相互作用。尽管已经鉴定出许多管腔形成的遗传调节因子,但对于驱动管腔形态发生的机械信号却知之甚少。管腔可以通过多种物理行为来塑形,包括将一层细胞围绕中空核心包裹起来、重新排列细胞以暴露管腔、或通过细胞迁移使管子伸长,尽管这些运动背后的许多细节仍知之甚少。确定单个细胞产生的力如何协作以产生驱动器官发生的组织水平的力至关重要。机械力的转导依赖于几个保守过程,包括细胞骨架网络的收缩或通过增加流体压力使管腔扩张。驱动管腔形成的形态发生事件为整个发育过程中发生的类似机械过程提供了一个模型。为了理解管腔网络是如何产生的,研究生化和机械过程如何整合以从相对简单的相互作用中产生复杂结构将至关重要。

相似文献

1
Pulling together: Tissue-generated forces that drive lumen morphogenesis.
Semin Cell Dev Biol. 2016 Jul;55:139-47. doi: 10.1016/j.semcdb.2016.01.002. Epub 2016 Jan 8.
2
Cells into tubes: Molecular and physical principles underlying lumen formation in tubular organs.
Curr Top Dev Biol. 2021;143:37-74. doi: 10.1016/bs.ctdb.2020.09.002. Epub 2020 Oct 20.
3
Mechanochemical dynamics of collective cells and hierarchical topological defects in multicellular lumens.
Sci Adv. 2024 May 3;10(18):eadn0172. doi: 10.1126/sciadv.adn0172. Epub 2024 May 1.
4
The mechanics of development: Models and methods for tissue morphogenesis.
Birth Defects Res C Embryo Today. 2010 Sep;90(3):193-202. doi: 10.1002/bdrc.20185.
5
Mechanical force sensing in tissues.
Prog Mol Biol Transl Sci. 2014;126:317-52. doi: 10.1016/B978-0-12-394624-9.00013-0.
6
Modeling branching morphogenesis using materials with programmable mechanical instabilities.
Curr Opin Biomed Eng. 2018 Jun;6:66-73. doi: 10.1016/j.cobme.2018.03.007. Epub 2018 Apr 4.
7
Using cell deformation and motion to predict forces and collective behavior in morphogenesis.
Semin Cell Dev Biol. 2017 Jul;67:161-169. doi: 10.1016/j.semcdb.2016.07.029. Epub 2016 Aug 2.
8
On Buckling Morphogenesis.
J Biomech Eng. 2016 Feb;138(2):021005. doi: 10.1115/1.4032128.
9
Forced to communicate: Integration of mechanical and biochemical signaling in morphogenesis.
Curr Opin Cell Biol. 2020 Oct;66:59-68. doi: 10.1016/j.ceb.2020.05.004. Epub 2020 Jun 20.
10
Computational modeling of morphogenesis regulated by mechanical feedback.
Biomech Model Mechanobiol. 2008 Apr;7(2):77-91. doi: 10.1007/s10237-007-0077-y. Epub 2007 Feb 21.

引用本文的文献

2
Coexisting mechanisms of luminogenesis in pancreatic cancer-derived organoids.
iScience. 2024 Jun 18;27(7):110299. doi: 10.1016/j.isci.2024.110299. eCollection 2024 Jul 19.
3
Shaping epithelial lumina under pressure.
Biochem Soc Trans. 2024 Feb 28;52(1):331-342. doi: 10.1042/BST20230632C.
4
The maternal embrace: the protection of plant embryos.
J Exp Bot. 2024 Jul 23;75(14):4210-4218. doi: 10.1093/jxb/erae071.
5
In situ quantification of osmotic pressure within living embryonic tissues.
Nat Commun. 2023 Nov 2;14(1):7023. doi: 10.1038/s41467-023-42024-9.
6
Topological morphogenesis of neuroepithelial organoids.
Nat Phys. 2023;19(2):177-183. doi: 10.1038/s41567-022-01822-6. Epub 2022 Nov 21.
7
The cell cortex as mediator of pancreatic epithelial development and endocrine differentiation.
Curr Opin Genet Dev. 2022 Feb;72:118-127. doi: 10.1016/j.gde.2021.11.004. Epub 2021 Dec 17.
8
Anisotropic expansion of hepatocyte lumina enforced by apical bulkheads.
J Cell Biol. 2021 Oct 4;220(10). doi: 10.1083/jcb.202103003. Epub 2021 Jul 30.
9
Programmed and self-organized flow of information during morphogenesis.
Nat Rev Mol Cell Biol. 2021 Apr;22(4):245-265. doi: 10.1038/s41580-020-00318-6. Epub 2021 Jan 22.
10
Fibronectin-based nanomechanical biosensors to map 3D surface strains in live cells and tissue.
Nat Commun. 2020 Nov 18;11(1):5883. doi: 10.1038/s41467-020-19659-z.

本文引用的文献

2
Mitotic cell rounding and epithelial thinning regulate lumen growth and shape.
Nat Commun. 2015 Jun 16;6:7355. doi: 10.1038/ncomms8355.
3
Pulsatile cell-autonomous contractility drives compaction in the mouse embryo.
Nat Cell Biol. 2015 Jul;17(7):849-55. doi: 10.1038/ncb3185. Epub 2015 Jun 15.
5
Local VE-cadherin mechanotransduction triggers long-ranged remodeling of endothelial monolayers.
J Cell Sci. 2015 Apr 1;128(7):1341-51. doi: 10.1242/jcs.159954. Epub 2015 Feb 6.
6
A strategy for tissue self-organization that is robust to cellular heterogeneity and plasticity.
Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):2287-92. doi: 10.1073/pnas.1410776112. Epub 2015 Jan 29.
7
Apico-basal forces exerted by apoptotic cells drive epithelium folding.
Nature. 2015 Feb 12;518(7538):245-8. doi: 10.1038/nature14152. Epub 2015 Jan 21.
8
Rac1-dependent phosphorylation and focal adhesion recruitment of myosin IIA regulates migration and mechanosensing.
Curr Biol. 2015 Jan 19;25(2):175-186. doi: 10.1016/j.cub.2014.11.043. Epub 2014 Dec 24.
9
The notochord breaks bilateral symmetry by controlling cell shapes in the zebrafish laterality organ.
Dev Cell. 2014 Dec 22;31(6):774-83. doi: 10.1016/j.devcel.2014.11.003.
10
Piezo2 is the major transducer of mechanical forces for touch sensation in mice.
Nature. 2014 Dec 4;516(7529):121-5. doi: 10.1038/nature13980.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验