Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
Department of Biology, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
Nat Commun. 2020 Nov 18;11(1):5883. doi: 10.1038/s41467-020-19659-z.
Mechanical forces are integral to cellular migration, differentiation and tissue morphogenesis; however, it has proved challenging to directly measure strain at high spatial resolution with minimal perturbation in living sytems. Here, we fabricate, calibrate, and test a fibronectin (FN)-based nanomechanical biosensor (NMBS) that can be applied to the surface of cells and tissues to measure the magnitude, direction, and strain dynamics from subcellular to tissue length-scales. The NMBS is a fluorescently-labeled, ultra-thin FN lattice-mesh with spatial resolution tailored by adjusting the width and spacing of the lattice from 2-100 µm. Time-lapse 3D confocal imaging of the NMBS demonstrates 2D and 3D surface strain tracking during mechanical deformation of known materials and is validated with finite element modeling. Analysis of the NMBS applied to single cells, cell monolayers, and Drosophila ovarioles highlights the NMBS's ability to dynamically track microscopic tensile and compressive strains across diverse biological systems where forces guide structure and function.
机械力是细胞迁移、分化和组织形态发生的组成部分;然而,在活体系统中,以最小的干扰直接以高空间分辨率测量应变一直具有挑战性。在这里,我们制造、校准和测试了一种基于纤连蛋白(FN)的纳米机械生物传感器(NMBS),该传感器可应用于细胞和组织表面,以测量从亚细胞到组织长度尺度的大小、方向和应变动态。NMBS 是一种荧光标记的超薄膜 FN 晶格网,通过调整晶格的宽度和间距从 2-100 μm 来调整空间分辨率。NMBS 的 3D 共聚焦时间 lapse 成像显示了已知材料机械变形过程中的 2D 和 3D 表面应变跟踪,并通过有限元建模进行了验证。对 NMBS 在单细胞、细胞单层和果蝇卵巢小管中的应用分析突出了 NMBS 在指导结构和功能的力作用下,在各种生物系统中动态跟踪微观拉伸和压缩应变的能力。